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Abstract

The classic frequentist theory of hypothesis testing developed by Neyman, Pearson, and Fisher

has a claim to being the Twentieth Century’s most influential piece of applied mathematics. Some-

thing new is happening in the Twenty-First Century: high throughput devices, such as microarrays,

routinely require simultaneous hypothesis tests for thousands of individual cases, not at all what

the classical theory had in mind. In these situations empirical Bayes information begins to force

itself upon frequentists and Bayesians alike. The two-groups model is a simple Bayesian construc-

tion that facilitates empirical Bayes analysis. This article concerns the interplay of Bayesian and

frequentist ideas in the two-groups setting, with particular attention focussed on Benjamini and

Hochberg’s False Discovery Rate method. Topics include the choice and meaning of the null hypoth-

esis in large-scale testing situations, power considerations, the limitations of permutation methods,

significance testing for groups of cases (such as pathways in microarray studies), correlation effects,

multiple confidence intervals, and Bayesian competitors to the two-groups model.
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1. Introduction Simultaneous hypotheses testing was a lively research topic during my student

days, exemplified by Rupert Miller’s classic text “Simultaneous Statistical Inference” (1966, 1981).

Attention focussed on testing N null hypotheses at the same time, where N was typically less than

half a dozen, though the requisite tables might go up to N = 20. Modern scientific technology,

led by the microarray, has upped the ante in dramatic fashion: my examples here will have N ’s

ranging from 200 to 10,000, while N = 500, 000, from SNP analyses, is waiting in the wings. (The

astrostatistical applications in Liang et al. (2004) envision N = 1010 and more!)

Miller’s text is relentlessly frequentist, reflecting a classic Neyman-Pearson testing framework,

with the main goal being preservation of “α”, overall test size, in the face of multiple inference. Most

of the current microarray statistics literature shares this goal, and also its frequentist viewpoint,

as described in the nice review article by Dudoit and Boldrick (2003).

Something changes though when N gets big: with thousands of parallel inference problems

to consider simultaneously, Bayesian considerations begin to force themselves even upon dedicated

frequentists. The “two-groups model” of the title is a particularly simple Bayesian framework for

large-scale testing situations. This article explores the interplay of frequentist and Bayesian ideas

in the two-groups setting, with particular attention paid to False Discovery Rates, Benjamini and

Hochberg (1995).

Figure 1 concerns four examples of large-scale simultaneous hypothesis testing. Each example

consists of N individual cases, with each case represented by its own z-value “zi”, for i = 1, 2, . . . , N .

The zi’s are based on familiar constructions that, theoretically, should yield standard N(0, 1) normal

distributions under a classical null hypothesis,

theoretical null : zi ∼ N(0, 1). (1.1)

Here is a brief description of the four examples, with further information following as needed in the

sequel.

Example A Prostate data, Singh et al. (2002). N = 6033 genes on 102 microarrays, n1 = 50

healthy males compared with n2 = 52 prostate cancer patients; zi’s based on two-sample t statistics

comparing the two categories.

Example B Education data, Rogosa (2003) N = 3748 California high schools; zi’s based on bino-

mial test of proportion advantaged versus proportion disadvantaged students passing mathematics

competency tests.

Example C Proteomics data, Turnbull (2006) N = 230 ordered peaks in time-of-flight spec-

troscopy study of 551 heart disease patients. Each peak’s z-value was obtained from a Cox regression
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of the patients’ survival times, with the predictor variable being the 551 observed intensities at that

peak.

Example D Imaging data, Schwartzman et al. (2005) N = 15445 voxels in a Diffusion Tensor

Imaging (DTI) study comparing 6 dyslexic with 6 normal children; zi’s based on two-sample t

statistics comparing the two groups. The figure shows only a single horizontal brain section having

655 voxels, with “-” indicating zi < 0, “+” for zi ≥ 0, and solid circles for zi > 2

Our four examples are enough alike to be usefully analyzed by the two-groups model of Section

2, but there are some striking differences too: the theoretical N(0, 1) null (1.1) is obviously inappro-

priate for the education data of panel B; there is a hint of correlation of z-value with peak number

in panel C, especially near the right limit; and there is substantial spatial correlation appearing in

the Imaging data of panel D.

My plan here is to discuss a range of inference problems raised by large-scale hypothesis testing,

many of which, it seems to me, have been more or less under-emphasized in a literature focussed on

controlling Type I errors: the choice of a null hypothesis, limitations of permutation methods, the

meaning of “null” and “non-null” in large scale settings, questions of power, test of significance for

groups of cases (e.g. pathways in microarray studies), the effects of correlation, multiple confidence

statements, and Bayesian competitors to the two-groups model. The presentation is intended to be

as non-technical as possible, many of the topics being discussed more carefully in Efron (2004, 2005,

2006). References will be provided as we go along, but this is not intended as a comprehensive review.

Microarrays have stimulated a burst of creativity from the statistics community, and I apologize

in advance for this article’s concentration on my own point of view, which aims at minimizing

the amount of statistical modeling required of the statistician. More model-intensive techniques,

including fully Bayesian approaches, as in Parmigiani et al. (2002) or Lewin et al. (2006), have their

own virtues, which I hope will emerge in the Discussion.

Section 2 discusses the two-groups model and false discovery rates in an idealized Bayesian

setting. Empirical Bayes methods are needed to carry out these ideas in practice, as discussed in

Section 3. This discussion assumes a “good” situation, like that of Example A, where the theoretical

null (1.1) fits the data. When it does not, as in Example B, the empirical null methods of Section

4 come into play. These raise interpretive questions of their own, as mentioned above, discussed in

the later sections.

We are living through a scientific revolution powered by the new generation of high-throughput

observational devices. This is a wonderful opportunity for statisticians, to redemonstrate our value

to the scientific world, but also to rethink basic topics in statistical theory. Hypothesis testing is

the topic here, a subject that needs a fresh look in contexts like those of Figure 1.
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Fig 1: Four examples of large-scale simultaneous inference, each panel indicating N z-values as
explained in the text. A prostate cancer microarray study, N = 6033 genes; B comparison of advan-
taged vs disadvantaged students passing mathematics competency tests, N = 3748 high schools; C
proteomics study, N = 230 ordered peaks in time-of-flight spectroscopy experiment; D imaging study
comparing dyslexic vs normal children, showing horizontal slice of 655 voxels out of N = 15455,
coded “-” for zi < 0, “+” for zi ≥ 0 and solid circle for zi > 2.
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2. The Two-Groups Model and False Discovery Rates The two-groups model is too simple

to have a single identifiable author, but it plays an important role in the Bayesian microarray

literature, as in Lee et al. (2000), Newton et al. (2001), and Efron et al. (2001). We suppose that

the N cases (“genes” as they will be called now in deference to microarray studies, though they

are not genes in the last three examples of Figure 1) are each either null or non-null with prior

probability p0 or p1 = 1 − p0, and with z-values having density either f0(z) or f1(z),

p0 = Pr{null} f0(z) density if null

p1 = Pr{non-null} f1(z) density if non-null,
(2.1)

The usual purpose of large-scale simultaneous testing is to reduce a vast set of possibilities to a

much smaller set of scientifically interesting prospects. In Example A for instance, the investigators

were probably searching for a few genes, or a few hundred at most, worthy of intensive study for

prostate cancer etiology. I will assume

p0 ≥ 0.90 (2.2)

in what follows, limiting the non-null genes to no more than 10%.

False discovery rate (Fdr) methods have developed in a strict frequentist framework, beginning

with Benjamini and Hochberg’s seminal 1995 paper, but they also have a convincing Bayesian

rationale in terms of the two-groups model. Let F0(z) and F1(z) denote the cumulative distribution

functions (cdf) of f0(z) and f1(z) in (2.1), and define the mixture cdf F (z) = p0F0(z) + p1F1(z).

Then Bayes rule yields the a posteriori probability of a gene being in the null group of (2.1) given

that its z-value Z is less than some threshold z, say “Fdr(z)”, as

Fdr(z) ≡ Pr{null|Z ≤ z} = p0F0(z)/F (z). (2.3)

(Here it is notationally convenient to consider the negative end of the z scale, values like z = −3.

Definition (2.3) could just as well be changed to Z > z or Z > |z|.) Benjamini and Hochberg’s

(1995) false discovery rate control rule begins by estimating F (z) with the empirical cdf

F̄ (z) = #{zi ≤ z}/N, (2.4)

yielding Fdr(z) = p0F0(z)/F̄ (z). The rule selects a control level “q”, say q = 0.1, and then declares

as non-null those genes having z-values zi satisfying zi ≤ z0, where z0 is the maximum value of z

satisfying

Fdr(z0) ≤ q. (2.5)

(Usually taking p0 = 1 in (2.3), and F0 the theoretical null, the standard normal cdf Φ(z) of (1.1).)

The striking theorem proved in the 1995 paper was that the expected proportion of null genes

reported by a statistician following rule (2.5) will be no greater than q. This assumes independence

imsart-sts ver. 2006/09/07 file: Two-Group-Model.tex date: April 3, 2007



6

among the zi’s, extended later to various dependence models in Benjamini and Yekutieli (2001). The

theorem is a purely frequentist result, but as pointed out in Storey (2002) and Efron and Tibshirani

(2002), it has a simple Bayesian interpretation via (2.3): rule (2.5) is essentially equivalent to

declaring non-null those genes whose estimated tail-area posterior probability of being null is no

greater than q. It is usually a good sign when Bayesian and frequentist ideas converge on a single

methodology, as they do here.

Densities are more natural than tail areas for Bayesian fdr interpretation. Defining the mixture

density from (2.1),

f(z) = p0f0(z) + p1f1(z), (2.6)

Bayes rule gives

fdr(z) ≡ Pr{null|Z = z} = p0f0(z)/f(z) (2.7)

for the probability of a gene being in the null group given z-score z. Here fdr(z) is the local false

discovery rate (Efron et al. 2001, and Efron 2005).

There is a simple relationship between Fdr(z) and fdr(z),

Fdr(z) = Ef{fdr(Z)|Z ≤ z}, (2.8)

“Ef” indicating expectation with respect to the mixture density f(z). That is, Fdr(z) is the mixture

average of fdr(Z) for Z ≤ z. In the usual situation where fdr(z) decreases as |z| gets large, Fdr(z)

will be smaller than fdr(z). Intuitively, if we decide to label all genes with zi less than some

negative value z0 as non-null, then fdr(z0), the false discovery rate at the boundary point z0, will

be greater than Fdr(z0), the average false discovery rate beyond the boundary. Figure 2 illustrates

the geometrical relationship between Fdr(z) and fdr(z); the Benjamini-Hochberg Fdr control rule

amounts to an upper bound on the secant slope.

For Lehmann alternatives

F1(z) = F0(z)γ , [γ < 1] (2.9)

it turns out that

log

{
fdr(z)

1 − fdr(z)

}
= log

{
Fdr(z)

1 − Fdr(z)

}
+ log

(
1
γ

)
, (2.10)

so

fdr(z) =̇ Fdr(z)/γ (2.11)

for small values of Fdr. The prostate data of Figure 1 has γ about 1/2 in each tail, making fdr(z) ∼
2 Fdr(z) near the extremes.

The statistics literature has not reached consensus on the choice of q for the Benjamini-

Hochberg control rule (2.5) – what would be the equivalent of 0.05 for classical testing – but
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Fig 2: Relationship of Fdr(z) to fdr(z). Heavy curve plots numerator of Fdr, p0F0(z), versus
denominator F (z); fdr(z) is slope of tangent, Fdr slope of secant.

Bayes factor calculations offer some insight. Efron (2005, 2006) uses the cutoff point

fdr(z) ≤ 0.20 (2.12)

for reporting non-null genes, on the admittedly subjective grounds that fdr values much greater

than 0.20 are dangerously prone to wasting investigators’ resources. Then (2.6), (2.7) yield posterior

odds ratio
Pr{non-null|z}/Pr{null|z} = (1 − fdr(z))/fdr(z)

= p1f1(z)/p0f0(z) ≥ 0.8/0.2 = 4.
(2.13)

Since (2.2) implies p1/p0 ≤ 1/9, (2.13) corresponds to requiring Bayes factor

f1(z)/f0(z) ≥ 36 (2.14)

in favor of non-null in order to declare significance.

Factor (2.14) requires much stronger evidence against the null hypothesis than in standard

one-at-a-time testing, where the critical threshold lies somewhere near 3, Efron and Gous (2001).

The fdr 0.20 threshold corresponds to q values in (2.5) between 0.05 and 0.15 for moderate choices

of γ; such q-value thresholds can be interpreted as providing conservative Bayes factors for Fdr

testing.

Model (2.1) ignores the fact that investigators usually begin with hot prospects in mind, genes

that have high prior probability of being interesting. Suppose p0(i) is the prior probability that

gene i is null, and define p0 as the average of p0(i) over all N genes. Then Bayes theorem yields
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this expression for fdri(z) = Pr{genei null|zi = z}:

fdri(z) = fdr(z)
ri

1 − (1 − ri)fdr(z)

[
ri =

p0(i)
1 − p0(i)

/ p0

1 − p0

]
, (2.15)

where fdr(z) = p0f0(z)/f(z) as before. So for a hot prospect having p0(i) = 0.50 rather than

p0 = 0.90, (2.15) changes an uninteresting result like fdr(zi) = 0.40 into fdri(zi) = 0.069.

Wonderfully neat and exact results like the Benjamini-Hochberg Fdr control rule exert a pow-

erful influence on statistical theory, sometimes more than is good for applied work. Much of the

microarray statistics literature seems to me to be overly concerned with exact properties borrowed

from classical test theory, at the expense of ignoring the complications of large-scale testing. Neat-

ness and exactness are mostly missing in what follows as I examine an empirical Bayes approach

to the application of two-groups/Fdr ideas to situations like those in Figure 1.

3. Empirical Bayes Methods In practice, the difference between Bayesian and frequentist

statisticians is their self-confidence in assigning prior distributions to complicated probability mod-

els. Large-scale testing problems certainly look complicated enough, but this is deceptive; their

massively parallel structure, with thousands of similar situations each providing information, al-

lows an appropriate prior distribution to be estimated from the data without upsetting even timid

frequentists like myself. This is the empirical Bayes approach of Robbins and Stein, 50 years old

but coming into its own in the microarray era, see Efron (2003).

Consider estimating the local false discovery rate fdr(z) = p0f0(z)/f(z), (2.7). I will begin with

a “good” case, like the Prostate data of Example A in Section 1, where it is easy to believe in the

theoretical null distribution (1.1),

f0(z) = ϕ(z) ≡ 1√
2π

e−
1
2
z2

. (3.1)

The z values in Example A were obtained by transforming the usual two-sample t statistic “ti”

comparing cancer and normal patients’ expression levels for gene i, to a standard normal scale via

zi = Φ−1(F100(ti)); (3.2)

here Φ and F100 are the cdf’s of standard normal and t100 distributions. If we had only gene i’s

data to test, classic theory would tell us to compare zi with f0(z) = ϕ(z) as in (3.1).

For the moment I will take p0, the prior probability of a gene being null, as known. Section

4 discusses p0’s estimation, but in fact its exact value does not make much difference to Fdr(z)

or fdr(z), (2.3) or (2.7), if p0 is near 1 as in (2.2). Benjamini and Hochberg (1995) take p0 = 1,

providing an upper bound for Fdr(z).
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This leaves us with only the denominator f(z) to estimate in (2.7). By definition (2.6), f(z)

is the marginal density of all N zi’s, so we can use all the data to estimate f(z). The algorithm

locfdr, an R function available from the CRAN library, does this by means of standard Poisson

GLM software, (Efron 2005). Suppose the z-values have been binned, giving bin counts

yk = #{zi in bin k}, k = 1, 2, . . . K. (3.3)

The prostate data histogram in Panel A of Figure 1 has K = 49 bins of width ∆ = 0.2.

We take the yk to be independent Poisson counts,

yk
ind∼ P0(νk) k = 1, 2, . . . K, (3.4)

with the unknown νk proportional to density f(z) at midpoint “xk” of the kth bin, approximately

νk = N∆f(xk). (3.5)

Modeling log(νk) as a pth degree polynomial function of xk makes (3.4)-(3.5) a standard Poisson

general linear model (GLM). The choice p = 7 used in Figure 3 amounts to estimating f(z) by

maximum likelihood within the seven-parameter exponential family

f(z) = exp

{
7∑

j=0

βjz
j

}
. (3.6)

Notice that p = 2 would make f(z) normal; the extra parameters in (3.6) allow flexibility in fitting

the tails of f(z). Here we are employing Lindsey’s method, see Efron and Tibshirani (1996). Despite

its unorthodox look it is no more than a convenient way to obtain maximum likelihood estimates

in multiparameter families like (3.6).

The heavy curve in Figure 3 is an estimate of the local false discovery rate for the Prostate

data,

f̂dr(z) = p0f0(z)/f̂(z), (3.7)

with f̂(z) constructed as above, f0(z) = ϕ(z) as in (3.1), and p0 = 0.93, as estimated in Section

4; f̂dr(z) is near 1 for |z| ≤ 2, decreasing to interesting levels for |z| > 3. 51 of the 6033 genes

have f̂dr(zi) ≤ 0.2, 26 on the right and 25 on the left, and these could be reported back to the

investigators as likely non-null candidates. (The standard Benjamini-Hochberg procedure, (2.5)

with q = 0.1, reports 60 non-null genes, 28 on the right and 32 on the left.)

At this point the reader might notice an anomaly: if p0 = 0.93 of the N genes are null, then

about (1 − p0) · 6033 = 422 should be non-null, but only 51 are reported. The trouble is that

most of the non-null genes are located in regions of the z axis where f̂dr(zi) exceeds 0.5, and these

cannot be reported without also reporting a bevy of null cases. In other words, the Prostate study

is underpowered.
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Fig 3: Heavy curve is estimated local false discovery rate f̂dr(z) for Prostate data. 51 genes, 26 on
the right and 25 on the left, have f̂dr(zi) < 0.20. Vertical bars estimate histogram of the non-null
counts (plotted negatively, divided by 50). Most of the non-null genes will not be reported.

The vertical bars in Figure 3 are estimates of the non-null counts, the histogram we would see

if only the non-null genes provided z-values. In terms of (3.3), (3.7), the non-null counts “y(1)
k ” are

y
(1)
k = [1 − f̂drk]yk, (3.8)

where f̂drk = f̂dr(xk), the estimated fdr value at the center of bin k. Since 1 − f̂drk approximates

the non-null probability for a gene in bin k, formula (3.8) is an obvious estimate for the expected

number of non-nulls.

Power diagnostics are obtained from comparisons of f̂dr(z) with the non-null histogram. High

power would be indicated if f̂drk was small where y
(1)
k was large. That obviously is not the case in

Figure 3. A simple power diagnostic is

̂E fdr
(1)

=
K∑

k=1

y
(1)
k f̂drk

/ K∑
k=1

ŷ
(1)
k , (3.9)

the expected non-null fdr. We want ̂E fdr
(1)

to be small, perhaps near 0.2, so that a typical non-null

gene will show up on a list of likely prospects. The Prostate data has ̂E fdr
(1)

= 0.68, indicating

low power. If the whole study were rerun we could expect a different list of 50 likely non-null genes,

barely overlapping with the first list. Section 3 of Efron (2006) discusses power calculations for

microarray studies, presenting more elaborate power diagnostics.
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Stripped of technicalities, the idea underlying false discovery rates is appealingly simple, and

in fact does not depend on the literal validity of the two-groups model (2.1). Consider the bin

zi ∈ [3.1, 3.3] in the Prostate data histogram; 17 of the 6033 genes fall into this bin, compared to

expected number 2.68 = p0N∆ϕ(3.2) of null genes, giving

fdr = 2.68/17 = 0.16 (3.10)

as an estimated false discovery rate. (The smoothed estimate in Figure 3 is f̂dr = 0.24.) The

implication is that only about one-sixth of the 17 are null genes. This conclusion can be sharpened,

as in Lehmann and Romano (2005), but (3.10) catches the main idea.

Notice that we do not need all the null genes to have the same density f0(z), it is enough to

assume that the average null density is f0(z), ϕ(z) in this case, in order to calculate the numerator

2.68. (This is an advantage of false discovery rate methods, which only control rates, not individual

probabilities.) The non-null density f1(z) in (2.1) plays no role at all since the denominator 17 is an

observed quantity. Exchangeability is the key assumption in interpreting (3.10): we expect about 1/6

of the 17 genes to be null, and assign posterior null probability 1/6 to all 17. Nonexchangeability,

in the form of differing prior information among the 17, can be incorporated as in (2.15).

Density estimation has a reputation for difficulty, well-deserved in general situations. However

there are good theoretical reasons, presented in Section 6 of Efron (2005), for believing that mixtures

of z-values are quite smooth, and that (3.7) will efficiently estimate fdr(z). Independence of the zi’s

is not required, only that f̂(z) is a reasonably close estimate of f(z).

Table 1 reports on a small simulation study in which

zi
ind∼ N(µi, 1)

⎧⎪⎨⎪⎩µi = 0 with probability 0.9

µi ∼ N(3, 1) with probability 0.1
(3.11)

for i = 1, 2, . . . , N = 1500. The table shows standard deviations for log(f̂dr(z)), (3.7), from 250

simulations of (3.11), and also using a delta-method formula derived in Section 5 of Efron (2006),

incorporated in the locfdr algorithm. Rather than (3.6), f(z) was modeled by a seven-parameter

natural spline basis, locfdr’s default, though this gave nearly the same results as (3.6). Also shown

are standard deviations for the corresponding tail area quantity log(F̂dr(z)) obtained by substitut-

ing F̂ (z) =
∫ z
−∞ f̂(z′)dz′ in (2.3). (This is a little less variable than using F̄ (z), (2.4).)

The “Theoretical Null” side of the table shows that f̂dr(z) is more variable than F̂dr(z), but

both are more than accurate enough for practical use. At z = 3 for example, f̂dr(z) only errs by

about 8%, yielding f̂dr(z) =̇ 0.12± 0.01. Standard errors are roughly proportional to N− 1
2 , so even

reducing N to 250 gives f̂dr(3) =̇ 0.12 ± .025, and similarly for other values of z, accurate enough

to make pictures like Figure 3 believable.
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THEORETICAL NULL EMPIRICAL NULL
z fdr local (formula) tail local (formula) tail

1.5 .88 .05 (.05) .05 .04 (.04) .10
2.0 .69 .08 (.09) .05 .09 (.10) .15
2.5 .38 .09 (.10) .05 .16 (.16) .23
3.0 .12 .08 (.10) .06 .25 (.25) .32
3.5 .03 .10 (.13) .07 .38 (.38) .42
4.0 .005 .11 (.15) .10 .50 (.51) .52

Table 1: Boldface standard errors of log f̂dr(z), (local fdr), and log F̂dr(z), (tail-area), 250 replications
of model (3.11), N = 1500. Parentheses: average from formula (5.9), Efron (2006); fdr is true value (2.7).
Empirical Null results explained in Section 4.

Empirical Bayes is a bipolar methodology, with alternating episodes of frequentist and Bayesian

activity. Frequentists may prefer F̂dr (or Fdr, (2.5)) to f̂dr because of connections with classical tail-

area hypothesis testing, or because cdfs are more straightforward to estimate than densities, while

Bayesians prefer f̂dr for its more apt a posteriori interpretation. Both, though, combine the Bayesian

two-groups model with frequentist estimation methods, and deliver the same basic information.

A variety of local fdr estimation methods have been suggested, using parametric, semi-parametric,

nonparametric, and Bayes methods; Pan et al. (2003), Pounds and Morris (2003), Allison et al.

(2004), Heller and Qing (2003), Broberg (2005), Aubert et al. (2004), Liao et al. (2004), and Do

et al. (2004), all performing reasonably well. The Poisson GLM methodology of locfdr has the

advantage of easy implementation with familiar software, and a closed-form error analysis.

Estimation efficiency becomes a more serious problem on the “Empirical Null” side of Table 1,

where we can no longer trust the theoretical null f0(z) ∼ N(0, 1). This is the subject of Section 4.

4. The Empirical Null Distribution We have been assuming that f0(z), the null density in

(2.1), is known on theoretical grounds, as in (3.1). This leads to false discovery estimates such as

f̂dr(z) = p0f0(z)/f̂(z) and F̂dr(z) = p0F0(z)/F̂ (z), where only denominators need be estimated.

Most applications of Benjamini and Hochberg’s control algorithm (2.5) make the same assumption

(sometimes augmented with permutation calculations, which usually produce only minor corrections

to the theoretical null, as discussed in Section 5). Use of the theoretical null is mandatory in classic

one-at-a-time testing, where theory provides the only information available for null behavior. But

things change in large-scale simultaneous testing situations: serious defects in the theoretical null

may become obvious, while empirical Bayes methods can provide more realistic null distributions.

Figure 4 shows z-value histograms for two additional microarray studies, described more fully

in Efron (2006). These are of the same form as the Prostate data: n subjects in two disease cate-

gories provide expression levels for N genes; two-sample t-statistics ti comparing the categories are

computed for each gene, and then transformed to z-values zi = Φ−1(Fn−2(ti)), as in (3.2). Unlike
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Panel A of Figure 1, however, neither histogram obeys the theoretical N(0, 1) null near z = 0. The

BRCA data has a much wider central peak, while the HIV peak is too narrow. The lighter curves

in Figure 4 are empirical null estimates, Efron (2004), normal curves fit to the central peak of the

z-value histograms. The idea here is simple enough: we make the “zero assumption”,

Zero assumption most of the z-values near 0 come from null genes, (4.1)

(discussed further below), generalize the N(0, 1) theoretical null to N(δ0, σ
2
0), and estimate (δ0, σ

2
0)

from the histogram counts near z = 0. Locfdr uses two different estimation methods, analytical and

geometric, described next.
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0
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0
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Fig 4: z-values from two microarray studies. BRCA data (Hedenfalk et al. 2001), comparing 7
breast cancer patients having BRCA1 mutation to 8 with BRCA2 mutation N = 3226 genes. HIV
data (van’t Wout et al. 2003) comparing 4 HIV+ males with 4 HIV- males, N = 7680 genes.
Theoretical N(0, 1) null, heavy curve is too narrow for BRCA data, too wide for HIV data. Light
curves are empirical nulls: normal densities fit to the central histogram counts.

Figure 5 shows the geometric method in action on the HIV data. The heavy solid curve is

log f̂(z), fit from (3.6) using Lindsey’s method, as described in Efron and Tibshirani (1996). The

two groups model and the zero assumption suggest that if f0 is normal, f(z) should be well-

approximated near z = 0 by p0ϕδ0,σ0(z), with

ϕδ0,σ0(z) ≡ (2πσ2
0)

− 1
2 exp

{
− 1

2

(
z − δ0

σ0

)2}
, (4.2)
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making log f(z) approximately quadratic,

log f(z) =̇ log p0 −
1
2

{
δ2
0

σ2
0

+ log(2πσ2
0)

}
+

δ0

σ2
0

z − 1
2σ2

0

z2. (4.3)

The beaded curve shows the best quadratic approximation to log f̂(z) near 0. Matching its coeffi-

cients (β̂0, β̂1, β̂2) to (4.3) yields estimates (δ̂0, σ̂0, p̂0), for instance σ̂0 = (2β̂2)−
1
2 ,

δ̂0 = −0.107, σ̂0 = 0.753, and p̂0 = 0.931 (4.4)

for the HIV data. Trying the same method with the theoretical null, that is taking (δ0, σ0) = (0, 1)

in (4.3), gives a very poor fit, and p̂0 equal the impossible value 1.20.

Fig 5: Geometric estimate of null proportion p0 and empirical null mean and standard deviation
(δ0, σ0) for the HIV data. Heavy curve is log f̂(z), estimated as in (3.3)-(3.6); beaded curve is best
quadratic approximation to log f̂(z) near z = 0.

The analytic method makes more explicit use of the zero assumption, stipulating that the

non-null density f1(z) in the two-groups model (2.1) is supported outside some given interval [a, b]

containing zero (actually chosen by preliminary calculations). Let N0 be the number of zi in [a, b],

and define

P0(δ0, σ0) = Φ

(
b − δ0

σ0

)
− Φ

(
a − δ0

σ0

)
and θ = p0P0. (4.5)

Then the likelihood function for z0, the vector of N0 z-values in [a, b], is

fδ0,σ0,p0(z0) = [θN0(1 − θ)N−N0 ]
[ ∏

zi∈z0

ϕδ0,σ0(zi)
P0(δ0, σ0)

]
. (4.6)
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This is the product of two exponential family likelihoods, which is numerically easy to solve for the

maximum likelihood estimates (δ̂0, σ̂0, p̂0), equaling (−0.120, 0.787, .956) for the HIV data.

Both methods are implemented in locfdr. The analytic method is somewhat more stable but

can be more biased than geometric fitting. Efron (2004) shows that geometric fitting gives nearly

unbiased estimates of δ0 and σ0 for p0 ≥ 0.90. Table 2 shows how the two methods fared in the

simulation study of Table 1.

Geometric Analytic

mean stdev (formula) mean stdev (formula)

δ̂0: 0.02 .056 (.062) 0.04 .031 (.032)
σ̂0: 1.02 .029 (.033) 1.04 .031 (.031)
p̂0: 0.92 .013 (.015) 0.93 .009 (.011)

Table 2: Comparison of estimates (δ̂0, σ̂0, p̂0), simulation study of Table 1. “Formula” is average from
delta-method standard deviation formulas, Section 5 Efron (2006), as implemented in locfdr.

A healthy literature has sprung up on the estimation of p0, as in Pawitan et al. (2005) and

Langlass et al. (2005), all of which assumes the validity of the theoretical null. The zero assumption

plays a central role in this literature (which mostly works with two-sided p-values rather than

z-values, e.g. pi = 2(1 − F100(|ti|)) in (3.2), making the “zero region” occur near p = 1). The two-

groups model is unidentifiable if f0 is unspecified in (2.1), since we can redefine f0 as f0 + cf1, and

p1 as p1 − cp0 for any c ≤ p1/p0. With p1 small, (2.2), and f1 supposed to yield zi’s far from 0 for

the most part, the zero assumption is a reasonable way to impose identifiability on the two-groups

model. Section 6 considers the meaning of the null density more carefully, among other things

explaining the upward bias of p̂0 seen in Table 2.

The empirical null is an expensive luxury from the point of view of estimation efficiency.

Comparing the right side of Table 1 with the left reveals factors of two or three increase in standard

error relative to the theoretical null, near the crucial point where fdr(z) = 0.2. Section 4 of Efron

(2005) pins the increased variability entirely on the estimation of (δ0, σ0): even knowing the true

values of p0 and f(z) would reduce the standard error of log f̂dr(z) by less than 1%. (Using tail area

Fdr’s rather than local fdr’s does not help – here the local version is less variable.)

The reason for considering empirical nulls is that the theoretical N(0, 1) null does not seem

to fit the data in situations like Figure 4. For the BRCA data we can see that the histogram

is overdispersed compared to N(0, 1) around z = 0; the implication is that there will be more

null counts far from zero than the theoretical null predicts, making N(0, 1) false discovery rate

calculations like (3.10) too optimistic. The opposite happens with the HIV data.

There is a lot at stake here for both Bayesians and frequentists. Table 3 shows the number of

gene discoveries identified by the standard Benjamini-Hochberg two-sided Fdr procedure, q = 0.10
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in (2.5). The HIV results are much more dramatic using the empirical null f0(z) ∼ N(−0.11, .752)

and in fact we will see in the next section that σ0 = 0.75 is quite believable in this case. The

BRCA data has been used in the microarray literature to compare analysis techniques, under the

presumption that better techniques will produce more discoveries, recently for instance is Storey

et al. (2005) and Pawitan et al. (2005). Table 3 suggests caution in the interpretation, where using

the empirical null negates any discoveries at all.

Theoretical Null Empirical Null
BRCA data: 107 0
HIV data: 22 180

Table 3: Number of genes identified as true discoveries by two-sided Benjamini-Hochberg procedure, 0.10
control level. Empirical null densities as in Figure 4.

The z-values in Panel C of Figure 1, Proteomics data, were calculated from standard Cox

likelihood tests that should yield N(0, 1) null results asymptotically. A N(−0.02, 1.292) empirical

null was obtained from the analytic method, resulting in only one peak with f̂dr < 0.2; using the

theoretical null gave 6 such peaks.

In Panel B of Figure 1, the z-values were obtained from familiar binomial calculations, each zi

being calculated as

z = (p̂ad − p̂dis − ∆)
/(

p̂ad(1 − p̂ad)
nad

+
p̂dis(1 − p̂dis)

ndis

) 1
2

, (4.7)

where nad was the number of advantaged students in the high school, p̂ad the proportion passing the

test, and likewise ndis and p̂dis for the disadvantaged students; ∆ = 0.192 was the overall difference,

median (p̂ad)−median (p̂dis). Here the empirical null standard deviation σ̂0 equals 1.52, half again

bigger than the theoretical standard deviation we would use if we had only one school’s data. An

empirical null fdr analysis yielded 75 schools with f̂dr < 0.20, 30 on the left and 45 on the right.

Example B is discussed a bit further in the next two sections, where its use in the two-groups model

is questioned.

My point here is not that the empirical null is always the correct choice. The opposite advice,

always use the theoretical null, has been inculcated by a century of classic one-case-at-a-time testing

to the point where it is almost subliminal, but it exposes the statistician to obvious criticism in sit-

uations like the BRCA and HIV data. Large-scale simultaneous testing produces mass information

of a Bayesian nature that impinges on individual decisions. The two-groups model helps bring this

information to bear, after one decides on the proper choice of f0 in (2.1). Section 5 discusses this

choice, in the form of a list of reasons why the theoretical null, and its close friend the permutation

null, might go astray.

imsart-sts ver. 2006/09/07 file: Two-Group-Model.tex date: April 3, 2007



17

5. Theoretical, Permutation, and Empirical Null Distributions Like most statisticians

I have spent my professional life happily testing hypotheses against theoretical null distributions.

It came as somewhat of a shock then, when pictures like Figure 4 suggested that the theoretical

null might be more theoretical than I had supposed. Once suspicious, it becomes easy to think

of reasons why f0(z), the crucial element in the two-groups model (2.1), might not obey classical

guidelines. This section presents four reasons why the theoretical null might fail, and also gives me

a chance to say something about the strengths and weaknesses of permutation null distributions.

Reason 1 Failed mathematical assumptions The usual derivation of the null hypothesis distri-

bution for a two-sample t statistic assumes independent and identically distributed (i.i.d.) normal

components. For the BRCA data of Figure 4, direct inspection of the 3226 by 15 matrix “X” of

expression values reveals markedly non-normal components, skewed to the right (even after the

columns of X have been standardized to mean 0 and standard deviation 1, as in all my examples

here.) Is this causing the failure of the N(0, 1) theoretical null?

Permutation techniques offer quick relief from such concerns. The columns of X are randomly

permuted, giving a matrix X∗ with corresponding t-values t∗i and z-values z∗i = Φ−1(Fn−2(t∗i )).

This is done some large number of times, perhaps 100, and the empirical distribution of the 100 ·N
z∗i ’s used as a permutation null. The well-known SAM algorithm, Tusher et al. (2001), effectively

employs the permutation null cdf in the numerator of the Fdr formula (2.3).

Applied to the BRCA matrix the permutation null came out nearly N(0, 1) (as did simply

simulating the entries of X∗ by independent draws from all 3226 · 15 entries of X) so non-normal

distributions were not the cause of BRCA’s over-wide histogram. In practice the permutation null

usually approximates the theoretical null closely, as a long history of research on the permutation

t-test demonstrated, see Section 5.9 of Lehmann and Romano (2005).

Reason 2 Unobserved covariates The BRCA study is observational rather than experimental –

the 15 women were observed to be BRCA1 or BRCA2, not assigned, and likewise with the HIV

and Prostate studies. There are likely to be covariates – age, race, general health – that affect the

microarray expression levels differently for different genes. If these were known to us they could

be factored out using a separate linear model on each gene’s data, providing a new and improved

zi obtained from the “Treatment” coefficient in the model. This would reduce the spread of the

z-value histogram, perhaps even restoring the N(0, 1) theoretical null for the BRCA data.

Unobserved covariates act to broaden the null distribution f0(z). They also broaden the non-

null distribution f1(z) in (2.1), and the mixture density f(z), but this does not correct fdr estimates

like (3.10), where the numerator, which depends entirely on f0, is the only estimated quantity.

Section 4 of Efron (2004) provides an analysis of a simplified model with unobserved covariates.
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Permutation techniques cannot recognize unobserved covariates, as the model demonstrates.

Reason 3 Correlation across arrays False discovery rate methodology does not require inde-

pendence among the test statistics zi. However the theoretical null distribution does require in-

dependence of the expression values used to calculate each zi; in terms of the elements xij of the

expression matrix X, for gene i we need independence among xi1, xi2, . . . , xin in order to validate

(1.1).

Experimental difficulties can undercut across-microarray independence, while remaining unde-

tectable in a permutation analysis. This happened in both studies of Figure 4, Efron (2004, 2006).

The BRCA data showed strong positive correlations among the first four BRCA2 arrays, and also

among the last four. This reduces the effective degrees of freedom for each t statistic below the

nominal 13, making ti and zi = Φ−1(F13(ti)) overdispersed.

Reason 4 Correlation across genes Benjamini and Hochberg’s 1995 paper verified Fdr control

for rule (2.5) under the assumption of independence among the N z-values (relaxed a little in

Benjamini and Yekutieli (2001).) This seems fatal for microarray applications since we expect

genes to be correlated in their actions. A great virtue of the empirical Bayes/two-groups approach

is that independence is not necessary; with F̂dr(z) = p0F0(z)/F̂ (z) for instance, F̂dr(z) can provide

a reasonable estimate of Pr{null|Z ≤ z} as long as F̂ (z) is roughly unbiased for F (z) – in formal

terms requiring consistency but not independence – and likewise for the local version f̂dr(z) =

p0f0(z)/f̂(z), (3.7).

There is, however, a black cloud inside the silver lining: the assumption that the null density

f0(z) is known to the statistician. The empirical null estimation methods of Section 4 do not require

z-value independence, and so disperse the black cloud, at the expense of increased variability in

fdr estimates. Do we really need to use an empirical null? Efron (2007) discusses the following

somewhat disconcerting result: even if the theoretical null distribution zi ∼ N(0, 1) holds exactly

true for all null genes, Reasons 1-3 above not causing trouble, correlation among the zi’s can make

the overall null distribution effectively much wider or much narrower than N(0, 1).

Microarray data sets tend to have substantial z-value correlations. Consider the BRCA data:

there are more than five million correlations ρij between pairs of gene z-values zi and zj ; by

examining the row-wise correlations in the X matrix we can estimate that the distribution of the

ρij s has approximately mean 0 and variance α2 = 0.1532,

ρ ∼ (0, α2). (5.1)

(The zero mean is a consequence of standardizing the columns of X.) This is a lot of correlation

– as much as if the BRCA genes occurred in 10 independent groups, but with common interclass

correlation 0.50 for all genes within a group.
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Section 3 of Efron (2006a) shows that under assumptions (1.1)-(5.1), the ensemble of null-gene

z-values will behave roughly as

zi ∼̇ N(0, σ2
0) (5.2)

with

σ2
0 = 1 +

√
2 A, A ∼ (0, α2). (5.3)

If the variable A equaled α = 0.153 for instance, giving σ0 = 1.10, then the expected number of

null counts below z = −3 would be about p0NΦ(−3/1.10) rather than p0NΦ(−3), more than twice

as many. There is even more correlation in the HIV data, α =̇ 0.42, enough so that a moderately

negative value of A could cause σ0 = 0.75, as in Figure 4.

The random variable A acts like an observable ancillary in the two-groups situation – observable

because we can estimate σ0 from the central counts of the z-value histogram, as in Section 4; σ̂0 is

essentially the half-width of the central peak.

Figure 6 is a cautionary story on the dangers of ignoring σ̂0. A simulation model with

zi ∼ N(0, 1) i = 1, 2, . . . , 2700

and

zi ∼ N(2.5, 1.5) i = 2701, . . . , 3000

(5.4)

was run, in which the null zi’s, the first 2700, were correlated to the same degree as in the BRCA

data, α = 0.153. For each of a 1000 simulations of (5.4), a standard Benjamini-Hochberg Fdr

analysis (2.5) (i.e. using the theoretical null for F0) was run at control level q = 0.10, and used to

identify a set of non-null genes.

Each of the thousand points in Figure 6 is (σ̂0, Fdp), where σ̂0 is half the distance between

the 16th and 86th percentiles of the 3000 zi’s, and Fdp is the “False discovery proportion”, the

proportion of identified genes that were actually null. Fdp averaged 0.091, close to the target value

q = 0.10, but with a strong dependence on σ̂0: the lowest 5% of σ̂0’s corresponded to Fdp’s averaging

only 0.03, while the upper 5% average was 0.29, a factor of nine difference.

The point here is not that the claimed q-value 0.10 is wrong, but that in any one simulation

we may be able to see, from σ̂0, that it is probably misleading. Using the empirical null counteracts

this fallacy which, again, is not apparent from the permutation null. (Section 4 of Efron 2006a

discusses more elaborate permutation methods that do bear on Figure 6. See Qui et al. (2005) for

a gloomier assessment of correlation effects in microarray analyses.)

What is causing the overdispersion in the Education data of Panel B, (4.7)? Correlation across

schools, Reason 4, seems ruled out by the nature of the sampling, leaving Reasons 2 and 3 as

likely candidates; unobserved covariates are an obvious threat here, while within-school sampling

dependences (Reason 3) are certainly possible. Fdr analysis yields eight times as many “signifi-
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Fig 6: Benjamini-Hochberg Fdr control procedure (2.5), q = 0.1, run for 1000 simulations of
correlated model (5.4); true false discovery proportion Fdp plotted versus half-width estimate σ̂0.
Overall Fdp averaged 0.091, close to q, but with a strong dependence on σ̂0.

cant” schools based on the theoretical null rather than f0 ∼ N(−0.35, 1.512), but looks completely

untrustworthy to me.

Sometimes the theoretical null distribution is fine, of course. The Prostate data had (δ̂0, σ̂0) =

(0.00, 1.06) according to the Analytic Method of (4.6), close enough to (0, 1) to make theoretical

null calculations believable. However there are lots of things that can go wrong with the theoretical

null, and lots of data to check it with in large-scale testing situations, making it a matter of due

diligence for the statistician to do such checking, even if only by visual inspection of the z-value

histogram. All simultaneous testing procedures, not just false discovery rates, go wrong if the null

distribution is misrepresented.

6. A One-Group Model Classical one-at-a-time hypothesis testing depends on having a unique

null density f0(z), such as student’s t distribution for the normal two-sample situation. The as-

sumption of unique f0 has been carried over into most of the microarray testing literature, including

our definition (2.1) of the two-groups model.

Realistic examples of large-scale inference are apt to be less clearcut, with true effect sizes

ranging continuously from zero or near zero to very large. Here we consider a “one-group” structural

model that allows for a range of effects. We can still usefully apply fdr methods to data from one-
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group models; doing so helps clarify the choice between theoretical and empirical null hypotheses,

and explicates the biases inherent in model (2.1). The discussion in this section, as in Section 2, will

be mostly theoretical, involving probability models rather than collections of observed z-values.

Model (2.1) does not require knowing how the z-values were generated, a substantial practical

advantage of the two-groups formulation. In contrast, one-group analysis begins with a specific

Bayesian structural model. We assume that the ith case has an unobserved true value µi distributed

according to some density g(µ), and that the observed zi is normally distributed around µi,

µ ∼ g(·) and z|µ ∼ N(µ, 1). (6.1)

The density g(µ) is allowed to have discrete atoms. It might have an atom at zero but this is not

required, and in any case there is no a priori partition of g(µ) into null and non-null components.

As an example suppose g(µ) is a mixture of 90% N(0, 0.52) and 10% N(2.5, 0.52),

g(µ) = 0.9 · ϕ0,.5(µ) + 0.1 · ϕ2.5,.5(µ) (6.2)

in notation (4.2). The histogram in Figure 7 shows N = 3000 draws of µi from (6.2). I am thinking

of this as a situation having a large proportion of uninteresting cases centered near, but not exactly

at, zero, and a small proportion of interesting cases centered far to the right. We still want to use

the observed zi’s from (6.2) to flag cases that are likely to be interesting.

The density of z in model (6.1) is

f(z) =
∫ ∞

−∞
ϕ(µ − z)g(µ)dµ [ϕ(x) = exp(−x2/2)/

√
2π], (6.3)

shown as the smooth curve in the left panel,

f(z) = 0.9 · ϕ0,1.12(z) + 0.1 · ϕ2.5,1.12(z). (6.4)

The effect of noise in going from µi to zi ∼ N(µi, 1) has blurred the strongly bimodal µ-histogram

into a smoothly unimodal f(z).

We can still employ the tactic of Figure 5, fitting a quadratic curve to log f(z) around z = 0, to

estimate p0 and the empirical null density f0(z). Using the formulas described later in this section

gives

p0 = 0.93 and f0(z) ∼ N(.02, 1.142), (6.5)

and corresponding fdr curve p0f0(z)/f(z), labeled “Emp null” in the right panel of Figure 7.

Looking at the histogram, it is reasonable to consider “interesting” those cases with µi ≥ 1.5,

and “uninteresting” µi < 1.5. The curve labeled “Bayes” in Figure 7 is the posterior probability

Pr{uninteresting|z} based on full knowledge of (6.1), (6.2). The empirical null fdr curve provides
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Fig 7: Histogram at left shows N = 3000 draws of µi from model (6.2); smooth curve is corre-
sponding density f(z), (6.3). Right Panel: “Emp null” is fdr(z) based on empirical null; it closely
matches full Bayes posterior probability “Bayes” = Pr{µk < 1.5|z} from (6.1)-(6.2); “Theo null”
is fdr(z) based on theoretical null, a poor match to Bayes.

an excellent estimate of the full Bayes result, without the prior knowledge. (An fdr based on the

theoretical N(0, 1) null is seen to be far off.)

Unobserved covariates, Reason 2 in Section 4, can easily produce blurry null hypotheses like

that in (6.2). My point here is that the two-group model will handle blurry situations if the null

hypothesis is empirically estimated. Or, to put things negatively, theoretical or permutation null

methods are prone to error in such situations, no matter what kind of analysis technique is used.

Comparing (6.5) with (6.4) shows that f0(z) is just about right, but p0 is substantially larger

than the value 0.90 we might expect. The ϕ2.5,.5 component of g(µ) puts some of its z-values near

zero, weakening the zero assumption (4.1) and biasing p0 upward. The same thing happened in

Table 2 even though model (3.11) is “unblurred”, g(µ) having a point mass at µ = 0. Fortunately,

p0 is the least important part of the two-groups model for estimating fdr(z), under assumption

(2.2). “Bias” can be a misleading term in model (6.1) since it presupposes that each µi is clearly

defined as null or non-null. This seems clear enough in (3.11). The null/non-null distinction is less

clear in (6.2), though it still makes sense to search for cases that have µi unusually far from 0.

The results in (6.5) come from a theoretical analysis of model (6.1). The idea in what follows
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is to generalize the construction in Figure 5 by approximating �(z) = log f(z) with Taylor series

other than quadratic.

The Jth Taylor approximation to �(z) is

�J(z) =
J∑

j=0

�(j)(0)zj/j!, (6.6)

where �(0)(0) = log f(0) and for j ≥ 1

�(j)(0) =
dj log f(z)

dzj

∣∣∣
z=0

. (6.7)

Let f̃0(z) indicate the subdensity p0f0(z), the numerator of fdr(z) in (2.7). The choice

f̃0(z) = e�J (z) (6.8)

matches f(z) at z = 0 (a convenient form of the zero assumption) and leads to an fdr expression

fdr(z) = e�J (z)/f(z). (6.9)

Larger choices of J match f̃0(z) more accurately to f(z), increasing ratio (6.9); the interesting

z-values, those with small fdr’s, are pushed farther away from zero as we allow more of the data

structure to be explained by the null density.

Bayesian model (6.1) provides a helpful interpretation of the derivatives �(j)(0):

Lemma The derivative �(j)(0), (6.7), is the jth cumulant of the posterior distribution of µ given

z = 0, except that �(2)(0) is the second cumulant minus 1. Thus

�(1)(0) = E0 and − �(2)(0) = 1 − V0 ≡ V̄0, (6.10)

where E0 and V0 are the posterior mean and variance of µ given z = 0. Proof of the Lemma appears

in Section 7 of Efron (2005).

For J = 0, 1, 2, formulas (6.8), (6.9) yield simple expressions for p0 and f0(z) in terms of

f(0), E0, and V̄0. These are summarized in Table 4, with p0 obtained from

p0 =
∫ ∞

−∞
f̃0(z)dz. (6.11)

Formulas are also available for Fdr(z), (2.8).

The choices J = 0, 1, 2 in Table 4 result in a normal null density f0(z), the only difference

being the means and variances. Going to J = 3 allows for an asymmetric choice of f0(z),

fdr(z) =
f(0)
f(z)

eE0z−V̄0z2/2+S0z3/6, (6.12)
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where S0 is the posterior third central moment of µ given z = 0 in model (6.1). The program locfdr

uses a variant, the “split normal”, to model asymmetric null densities, with the exponent of (6.12)

replaced by a quadratic spline in z.

The Lemma bears on the difference between empirical and theoretical nulls. Suppose that the

probability mass of g(µ) occurring within a few units of the origin is concentrated in an atom at

µ = 0. Then the posterior mean and variance (E0, V0) of µ given z = 0 will be near 0, making

(E0, V̄0) =̇ (0, 1). In this case the empirical null (J = 2) will approximate the theoretical null

(J = 0). Otherwise the two nulls differ; in particular, any mass of g(µ) near zero increases V0,

swelling the standard deviation (1 − V0)−
1
2 of the empirical null.

J : 0 1 2

p0: f(0)
√

2π f(0)
√

2π eE2
0/2 f(0)

√
2π
V̄0

eE2
0/2V̄0

f0(z): N(0, 1) N(E0, 1) N(E0/V̄0, 1/V̄0)

fdr(z): f(0)e−z2/2

f(z)
f(0)eE0z−z2/2

f(z)
f(0)eE0z−V̄0z2/2

f(z)

Table 4: Expressions for p0, f0 and fdr, first three choices of J in (6.8), (6.9); V̄0 = 1−V0; J = 0
gives theoretical null, J = 2 empirical null; f(z) from (6.3).

The two-groups model (2.1), (2.2) puts one in an hypothesis-testing frame of mind: a large

group of uninteresting cases is to be statistically separated from a small interesting group. Even

blurry situations like (6.2) exhibit a clear grouping, as in Figure 7. None of this is necessary for the

one-group model (6.1). We might, for example, suppose that g(µ) is normal,

µ ∼ N(A, B2), (6.13)

and proceed in an empirical Bayes way to estimate A and B and then apply Bayes estimation to

the individual cases.

This line of thought leads directly to James-Stein estimation, Efron and Morris (1975). Estima-

tion, as opposed to testing, is the key word here – with possible effect sizes µi varying continuously

rather than having a large clump of values near zero. The Education data of Panel B, Figure 1,

could reasonably be analyzed this way, instead of through simultaneous testing. Scientific context,

which says that there is likely to be a large group of (nearly) unaffected genes, as in (2.2), is what

makes the two-groups model a reasonable Bayes prior for microarray studies.

7. Bayesian and Frequentist Confidence Statements False discovery rate methods provide

a happy marriage between Bayesian and frequentist approaches to multiple testing, as shown in

Section 2. Empirical Bayes techniques based on the two-groups model seem to give us the best
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of both statistical philosophies. Things do not always work out so peaceably – in these next two

sections I wanted to discuss contentious situations where the divorce court looms as a possibility.

An insightful and ingenious paper by Benjamini and Yekutieli (2005) discusses the following

problem in simultaneous significance testing: having applied false discovery rate methods to select

a set of non-null cases, how can confidence intervals be assigned to the true effect size for each

selected case? (The paper and the ensuing discussion are much more general, but this is all I need

for the illustration here.)

Figure 8 concerns Benjamini and Yekutieli’s solution applied to the following simulated data

set: N = 10, 000 (µi, zi) pairs were generated as in (6.1), with 90% of the µi zero, the null cases,

and 10% distributed N(−3, 1),

g(µ) = 0.90 · δ0(µ) + 0.10 · ϕ−3,1(µ), (7.1)

δ0(µ) a delta function at µ = 0. The Fdr procedure (2.5) was applied with q0 = 0.05, yielding 566

non-null “discoveries”, those having zi ≤ −2.77.

The Benjamini-Yekutieli “False Coverage Rate” (FCR) control procedure provides upper and

lower bounds for the true effect size µi corresponding to each zi less than -2.77; these are indicated

by heavy diagonal lines in Figure 8, constructed as described in BY’s Definition 1. This construction

guarantees that the expected proportion of the 566 intervals not containing the true µi, the false

coverage rate, is bounded by q = 0.05.

In a real application only the zi’s and their BY confidence intervals could be seen, but in a

simulation we can plot the actual (zi, µi) pairs, and compare them to the intervals. Figure 8 plots

(zi, µi) for the 1000 non-null cases, those from µi ∼ N(−3, 1) in (7.1). 552 of these, plotted as heavy

points, lie to the left of z0 = −2.77, the Fdr threshold, with the other 448 plotted as light points;

14 null cases, µi = 0, plotted as “+”, also had zi < z0.

The first thing to notice is that the FCR property is satisfied: only 17 of the 566 intervals have

failed to contain µi, (14 of these the +’s), giving 3% non-coverage. The second thing though is that

the intervals are frighteningly wide – zi ± 2.77, about
√

2 longer than the usual individual 95%

intervals zi ± 1.96 – and poorly centered, particularly at the left where all the µi’s fall in their

intervals’ upper halves.

An interesting comparison is with Bayes rule applied to (6.1), (7.1), which yields

Pr{µ = 0|zi} = fdr(zi), (7.2)

where

fdr(z) = 0.9 · ϕ0,1(z)/[0.9 · ϕ0,1(z) + 0.1 · ϕ−3,
√

2(z)] (7.3)
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Fig 8: Benjamini-Yekutieli FCR controlling intervals applied to simulated sample of 10,000 cases
from (6.1), (7.1). 566 cases have zi ≤ z0 = −2.77, the Fdr (.05) threshold. Plotted points are
(zi, µi) for the 1000 non-null cases; 14 null cases with zi ≤ z0 indicated by “+”. Heavy diagonal
lines indicate FCR 95% interval limits; light lines are Bayes 95% posterior intervals given µi �= 0.
Beaded curve at top is fdr(zi), posterior probability µi = 0.

as in (2.7), and

g(µi|µi �= 0, zi) ∼ N

(
zi − 3

2
,
1
2

)
. (7.4)

That is, µi is null with probability fdr(zi), and N(zi − 3)/2, 1/2) with probability 1− fdr(zi). The

dashed lines indicate the posterior 95% intervals given that µi is non-null, (zi − 3)/2 ± 1.96/
√

2,

now
√

2 shorter than the usual individual intervals; at the top of Figure 9 the beaded curve shows

fdr(zi).

The frequentist FCR intervals and the Bayes intervals are pursuing the same goal, to include the

non-null scores µi with 95% probability. At zi = −2.77 the FCR assessment is Pr{µ ∈ [−5.54, 0]} =

0.95; Bayes rule states that µi = 0 with probability fdr(−2.77) = 0.25, and if µi �= 0 then µi ∈
[−4.27,−1.49] with probability 0.95. This kind of disconnected description is natural to the two-

groups model. A principal cause of FCR’s oversized intervals (the paper shows that no FCR-

controlling intervals can be much narrower) comes from using a single connected set to describe a

disconnected situation.

Of course Bayes rule won’t be easily available to us in most practical problems. Is there an
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empirical Bayes solution? Part of the solution certainly is there: estimating fdr(z) as in Section 3.

Estimating g(µi|µi �= 0, zi), (7.4) is more challenging. A straightforward approach uses the non-null

counts (3.8) to estimate the non-null density f1(z) in (2.1), deconvolutes f̂1(z) to estimate the

non-null component “g1(µ)” in (7.1), and applies Bayes rule directly to ĝ1. This works reasonably

well in Figure 8’s example, but deconvolution calculations are notoriously tricky and I have not

been able to produce a stable general algorithm.

Good frequentist methods like the FCR procedure enjoy the considerable charm of an exact

error bound, without requiring a priori specifications, and of course there is no law that they have

to agree with any particular Bayesian analysis. In large-scale situations, however, empirical Bayes

information can overwhelm both frequentist and Bayesian predilections, hopefully leading to a more

satisfactory compromise between the two sets of intervals appearing in Figure 8.

8. Is a Set of Genes Enriched? Microarray experiments, through a combination of insufficient

data per gene and massively multiple simultaneous inference, often yield disappointing results.

In search of greater detection power, enrichment analysis considers the combined outcomes of

biologically defined sets of genes, such as pathways. As a hypothetical example, if the 20 z-values

in a certain pathway all were positive, we might infer significance to the pathway’s effect, whether

or not any of the individual zi’s were deemed non-null.

Our example here will involve the p53 data, from Subramanian et al. (2005), N = 10, 100 genes

on n = 50 microarrays, zi s as in (3.2), whose z-value histogram looks like a slightly short-tailed

normal distribution having mean 0.04 and standard deviation 1.06. Fdr analysis (2.5), q = 0.1,

yielded just one non-null gene, while enrichment analysis indicated seven or eight significant gene

sets, as discussed at length in Efron and Tibshirani (2006).

Figure 9 concerns the CTL pathway, a set of 15 genes relating to the development of so-called

killer T cells, #95 in a catalogue of 522 gene-sets provided by Subramanian et al. (2005). For a

given gene-set “S” with m members, let z̄S denote the mean of the m z-values within S; z̄S is the

enrichment statistic suggested in the Bioconductor R package limma, Smythe (2004),

z̄S = 0.842 (8.1)

for the CTL pathway. How significant is this result? I will consider assigning an individual p-value

to (8.1), not taking into account multiple inference for a catalogue of possible gene-sets (which we

could correct for later using Fdr methods for instance to combine the individual p-values).

Limma computes p-values by “row randomization”, that is by randomizing the order of rows

of the N × n expression matrix X, and recomputing the statistic of interest. For a simple average

like (8.1) this amounts to choosing random subsets of size m = 15 from the N = 10, 100 zi’s and

comparing z̄S to the distribution of the randomized values z̄∗S . 500 rowrands produced only one
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Fig 9: Computing a p-value for z̄S = 0.842, average of 15 z-values in CTL pathway, p53 data Solid
histogram 500 row randomizations give p-value 0.002. Line histogram 500 column permutations give
p-value 0.048.

z̄∗S > z̄S , giving p-value 1/500 = 0.002.

Subramanian et al. calculate p-values by permuting the columns of X rather than the rows.

The permutations yield a much wider distribution than the row randomizations in Figure 9, with

corresponding p-value 0.048. The reason is simple: the genes in the CTL pathway have highly

correlated expression levels that increase the variance of z̄∗S ; column-wise permutations of X preserve

the correlations across genes, while row randomizations destroy them.

At this point it looks like column permutations should always give the right answer. Wrong! For

the BRCA data in Figure 4, the ensemble of z-values has (mean, standard deviation) about (0, 1.50),

compared to (0, 1) for z∗i ’s from column permutations. This shrinks the permutation variability of

z̄∗S , compared to what one would get from a random selection of genes for S, and can easily reverse

the relationship in Figure 9.

The trouble here is that there are two obvious, but different, null hypotheses for testing en-

richment:

Randomization null hypothesis S has been chosen by random selection of m genes from the

full set of N genes.

Permutation null hypothesis The order of the n microarrays has been chosen at random with
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respect to the patient characteristics (e.g. with the patient being in the normal or cancer category

in Example A of the Introduction).

Efron and Tibshirani (2006b) suggest a compromise method, restandardization, that to some

degree accommodates both null hypotheses. Instead of permuting z̄S in (8.1), restandardization per-

mutes (z̄S −µz)/σz, where (µz, σz) are the mean and standard deviation of all N zi’s. Subramanian

et al. do something similar using a Kolmogorov-Smirnov enrichment statistic.

All of these methods are purely frequentistic. Theoretically we might consider applying the

two-groups/empirical Bayes approach to sets of z-values “zS”, just as we did for individual zi’s in

Sections 2 and 3. For at least three reasons that turns out to be extremely difficult:

• My technique for estimating the mixture density f , as in (3.6), becomes exponentially more

difficult in higher dimensions.

• There is not likely to be satisfactory theoretical null f0 for the correlated components of z̄S , while

estimating an empirical null faces the same “curse of dimensionality” as for f .

• As discussed following (3.10), false discovery rate interpretation depends on exchangeability,

essentially an equal a priori interest in all N genes. There may be just one gene-set S of interest to

an investigator, or a catalogue of several hundred S’s as in Subramanian et al., but we certainly are

not interested in all possible gene-sets. It would be a daunting exercise in subjective, as opposed to

empirical, Bayesianism to assign prior probabilities to any particular gene-set S.

Having said this, it turns out there is one “gene-set” situation where the two-groups/empirical

Bayes approach is practical (though it does not involve genes). Looking at panel D of Figure 1, the

Imaging data, the obvious spatial correlation among z-values suggests local averaging to reduce the

effects of noise.

This has been carried out in Figure 10: at voxel i of the N = 15445 voxels, the average of

z-values for those voxels within city-block distance 2 has been computed, say “z̄i”. The results for

the same horizontal slice as in panel D are shown using a similar symbol code. Now that we have

a single number zi for each voxel, we can compute the empirical null f̂dr estimates as in Section 4.

The voxels labeled “enriched” in Figure 10 are those having f̂dr(z̄i) ≤ 0.2.

Enrichment analysis looks much more familiar in this example, being no more than local spatial

smoothing. The convenient geometry of three dimensional space has come to our rescue, which it

emphatically fails to do in the microarray context.

9. Conclusion Three forces influence the state of statistical science at any one time: mathemat-

ics, computation, and applications, by which I mean the type of problems subject-area scientists
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Fig 10: Enrichment analysis of Imaging data, Panel D of Figure 1; z-value for original 15445 voxels
have been averaged over “gene-sets” of neighboring voxels with city-block distance ≤ 2. Coded as “-”
for z̄i < 0, “+” for z̄i ≥ 0; solid rectangles, labeled as “Enriched”, show voxels with f̂dr(z̄i) ≤ 0.2,
using empirical null.

bring to us for solution. The Fisher-Neyman-Pearson theory of hypothesis testing was fashioned

for a scientific world where experimentation was slow and difficult, producing small data sets fo-

cussed on answering single questions. It was wonderfully successful within this milieu, combining

elegant mathematics and limited computational equipment to produce dependable answers in a

wide variety of application areas.

The three forces have changed relative intensities recently. Computation has become literally

millions of times faster and more powerful, while scientific applications now spout data in fire-hose

quantities. (Mathematics, of course, is still mathematics.) Statistics is changing in response, as it

moves to accommodate massive data sets that aim to answer thousands of questions simultaneously.

Hypothesis testing is just one part of the story, but statistical history suggests that it could play a

central role: its development in the first third of the Twentieth Century led directly to confidence

intervals, decision theory, and the flowering of mathematical statistics.

I believe, or maybe just hope, that our new scientific environment will also inspire a new

look at old philosophical questions. Neither Bayesians nor frequentists are immune to the pressures

of scientific necessity. Lurking behind the specific methodology of this paper is the broader, still

mainly unanswered, question of how one should combine evidence from thousands of parallel but not

identical hypothesis testing situations. What I called “empirical Bayes information” accumulates in
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a way that is not well understood yet, but still has to be acknowledged: in the situations of Figure

4, the frequentist is not free to stick with classical null hypotheses, while the Bayesian cannot use

prior (6.13), at least not without the risk of substantial inferential confusion.

Classical statistics developed in a data-poor environment, as Fisher’s favorite description,

“small-sample theory”, suggests. By contrast, modern-day disciplines such as machine learning

seem to struggle with the difficulties of too much data. Both problems, too little and too much

data, can afflict microarray studies. Massive data sets like those in Figure 1 are misleadingly com-

forting in their suggestion of great statistical accuracy. As I have tried to show here, the power to

detect interesting specific cases, genes, may still be quite low. New methods are needed, perhaps

along the lines of “enrichment”, as well as a theory of experimental design explicitly fashioned for

large-scale testing situations.

One floor up from the philosophical basement lives the untidy family of statistical models.

In this paper I have tried to minimize modeling decisions by working directly with z-values. The

combination of the two-groups model and false discovery rates applied to the z-value histogram is

notably light on assumptions, more so when using an empirical null, which does not even require

independence across the columns of X (that is, across microarrays, a dangerous assumption as

shown in Section 6 of Efron (2004)). There will certainly situations when modeling inside the X

matrix, as in Newton et al. (2004) or Kerr, Martin, and Churchill (2000) yields more information

than z-value procedures, but I will leave that for others to discuss.
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