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Abstract

Empirical Bayes methods use the data from parallel experiments, for instance observa-
tions Xk ∼ N (Θk, 1) for k = 1, 2, . . . , N , to estimate the conditional distributions Θk|Xk.
There are two main estimation strategies: modeling on the θ space, called “g-modeling”
here, and modeling on the x space, called “f -modeling.” The two approaches are de-
scribed and compared. A series of computational formulas are developed to assess their
frequentist accuracy. Several examples, both contrived and genuine, show the strengths
and limitations of the two strategies.
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1 Introduction

Empirical Bayes methods, though of increasing use, still suffer from an uncertain theoretical

basis, enjoying neither the safe haven of Bayes theorem nor the steady support of frequentist

optimality. Their rationale is often reduced to inserting more or less obvious estimates into

familiar Bayesian formulas. This conceals the essential empirical Bayes task: learning an

appropriate prior distribution from ongoing statistical experience, rather than knowing it by

assumption. Efficient learning requires both Bayesian and frequentist modeling strategies.

My plan here is to discuss such strategies in a mathematically simplified framework that,

hopefully, renders them more transparent. The development proceeds with some method-

ological discussion supplemented by numerical examples.
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discussions.
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A wide range of empirical Bayes applications have the following structure: repeated

sampling from an unknown prior distribution g(θ) yields unseen realizations

Θ1,Θ2, . . . ,ΘN . (1.1)

Each Θk in turn provides an observation Xk ∼ fΘk
(·) from a known probability family fθ(x),

X1, X2, . . . , XN . (1.2)

On the basis of the observed sample (1.2), the statistician wishes to approximate certain

Bayesian inferences that would be directly available if g(θ) were known. This is the empirical

Bayes framework developed and named by Robbins (1956). Both Θ and X are usually one-

dimensional variates, as they will be in our examples, though that is of more applied than

theoretical necessity.

A central feature of empirical Bayes estimation is that the data arrives on the x scale but

inferences are calculated on the θ scale. Two main strategies have developed: modeling on the

θ scale, called g-modeling here, and modeling on the x scale, called f -modeling. G-modeling

has predominated in the theoretical empirical Bayes literature, as in Laird (1978), Morris

(1983), Zhang (1997), and Jiang and Zhang (2009). Applications, on the other hand, from

Robbins (1956) onward, have more often relied on f -modeling, recently as in Efron (2010,

2011) and Brown, Greenshtein and Ritov (2013).

We begin Section 2 with a discretized statement of Bayes theorem that simplifies the

nonparametric f -modeling development of Section 3. Parameterized f -modeling, necessary

for efficient empirical Bayes estimation, is discussed in Section 4. Section 5 introduces an

exponential family class of g-modeling procedures. Classic empirical Bayes applications, an

f -modeling stronghold (including Robbins’ Poisson formula, the James–Stein estimator, and

false discovery rate methods), are the subject of Section 6. The paper concludes with a brief

discussion in Section 7.

Several numerical examples, both contrived and genuine, are carried through in Sections
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2 through 7. The comparison is never one-sided: as one moves away from the classic appli-

cations, g-modeling comes into its own. Trying to go backward, from observations on the

x-space to the unknown prior g(θ), has an ill-posed computational flavor. Empirical Bayes

calculations are inherently fraught with difficulties, making both of the modeling strategies

useful. An excellent review of empirical Bayes methodology appears in Chapter 3 of Carlin

and Louis (2000).

There is an extensive literature, much of it focusing on rates of convergence, concerning

the “deconvolution problem,” that is, estimating the distribution g(θ) from the observed X

values. A good recent reference is Butucea and Comte (2009). Empirical Bayes inference

amounts to estimating certain nonlinear functionals of g(·), whereas linear functionals play a

central role for the deconvolution problem, as in Cavalier and Hengartner (2009), but the two

literatures are related. The development in this paper employs discrete models that avoid

rates of convergence difficulties.

Empirical Bayes analyses often produce impressive-looking estimates of posterior θ distri-

butions. The main results in what follows are a series of computational formulas — Theorems

1 through 4 — giving the accuracy of both f -model and g-model estimates. Accuracy can be

poor, as some of the examples show, and in any case accuracy assessments are an important

part of the analysis.

2 A discrete model of Bayesian inference

In order to simplify the f -modeling computations we will assume a model in which both the

parameter vector θ and the observed data set x are confined to finite discrete sets:

θ ∈ θ = (θ1, θ2, . . . , θj , . . . , θm) and x ∈ x = (x1, x2, . . . , xi, . . . , xn) (2.1)

with m < n. The prior distribution g puts probability gj on θj ,

g = (g1, g2, . . . , gj , . . . , gm)′. (2.2)
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This induces a marginal distribution f on x,

f = (f1, f2, . . . , fi, . . . , fn)′, (2.3)

with fi = Pr{x = xi}. Letting {pij} represent the sampling probabilities

pij = Pr{xi|θj}, (2.4)

the n×m matrix

P = (pij) (2.5)

produces f from g according to

f = Pg. (2.6)
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Figure 1: discrete model;  prior g(theta), theta=seq(−3,3,.2),
g is equal mixture of N(0,.5^2) and density c*abs(theta)
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Corresponding f(x) assuming N(theta,1) sampling,
x=seq(−4.4,5.2,.05)
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Figure 1: Top Discrete model: prior g(θ), θ = seq(−3, 3, 0.2); g is equal mixture of N (0, 0.52) and
density ∝ |θ|. Bottom Corresponding f(x): assuming N (θ, 1) sampling, x = seq(−4.4, 5.2, 0.05).
Note the different scales.
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In the example of Figure 1, we have

θ = (−3,−2.8, . . . , 3) (m = 31), (2.7)

with g(θ) an equal mixture of a discretized N (0, 0.52) density and a density proportional to

|θ|. The sampling probabilities pij are obtained from the normal translation model ϕ(xi−θj),

ϕ the standard normal density function, and with

x = (−4.4,−4.35, . . . , 5.2) (n = 193). (2.8)

Then f = Pg produces the triangular-shaped marginal density f(x) seen in the bottom

panel. Looking ahead, we will want to use samples from the bottom distribution to estimate

functions of the top.

In the discrete model (2.1)–(2.6), Bayes rule takes the form

Pr{θj |xi} = pijgj/fi. (2.9)

Letting pi represent the ith row of matrix P , the m-vector of posterior probabilities of θ

given x = xi is given by

diag(pi)g/pig, (2.10)

where diag(v) indicates a diagonal matix with diagonal elements taken from the vector v.

Now suppose t(θ) is a parameter of interest, expressed in our discrete setting by the vector

of values

t = (t1, t2, . . . , tj , . . . , tm)′. (2.11)

The posterior expectation of t(θ) given x = xi is then

E {t(θ)|xi} =

m∑
j=1

tjpijgj/fi

= t′ diag(pi)g/pig.

(2.12)
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The main role of the discrete model (2.1)–(2.6) is to simplify the presentation of f -

modeling begun in Section 3. Basically, it allows the use of familiar matrix calculations

rather than functional equations. G-modeling, Section 5, will be presented in both discrete

and continuous forms. The prostate data example of Section 6 shows our discrete model

nicely handling continuous data.

3 Bayes rule in terms of f

Formula (2.12) expresses E{t(θ)|xi} in terms of the prior distribution g. This is fine for pure

Bayesian applications but in empirical Bayes work, information arrives on the x scale and we

may need to express Bayes rule in terms of f . We begin by inverting (2.6), f = Pg.

For now assume that the n×m matrix P (2.4)–(2.5) is of full rank m. Then the m× n

matrix

A = (P ′P )−1P ′ (3.1)

carries out the inversion,

g = Af . (3.2)

Section 4 discusses the case where rank(P ) is less than m. Other definitions of A are possible;

see the discussion in Section 7.

With pi denoting the ith row of P as before, let

u′ = (· · · tjpij · · · ) = t′ diag(pi), v′ = pi, (3.3)

and

U ′ = u′A, V ′ = v′A, (3.4)

U and V being n-vectors. (Here we are suppressing the subscript in U = Ui, etc.) Using

(3.2), the Bayes posterior expectation E{t|xi} (2.12) becomes

E{t|xi} =
u′g

v′g
=
U ′f

V ′f
, (3.5)
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the latter being Bayes rule in terms of f . Notice that U and V do not depend on g or f .

The denominator V ′f equals f(xi) in (3.5), but not in the regularized versions of Section 4.

In a typical empirical Bayes situation, as in Section 6.1 of Efron (2010), we might observe

independent observations X1, X2, . . . , XN from the marginal density f(x),

Xk
iid∼ f(·), k = 1, 2, . . . , N, (3.6)

and wish to estimate E = E{t|xi}. For the discrete model (2.1), the vector of counts y =

(y1, y2, . . . , yn)′,

yi = #{Xk = xi}, (3.7)

is a nonparametric sufficient statistic; y follows a multinomial distribution on n categories,

N draws, probability vector f ,

y ∼ Multn(N,f), (3.8)

having mean vector and covariance matrix

y ∼ (Nf , ND(f)) , D(f) ≡ diag(f)− ff ′. (3.9)

The unbiased estimate of f ,

f̂ = y/N, (3.10)

gives a nonparametric estimate Ê of E{t|xi} by substitution into (3.5),

Ê = U ′f̂/V ′f̂ . (3.11)

Using f̂ ∼ (f , D(f)/N), a standard differential argument yields the approximate “delta

method” frequentist standard error of Ê. Define

Uf =
n∑
i=1

fiUi, Vf =
n∑
i=1

fiVi, (3.12)
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and

W =
U

Uf
− V
Vf
. (3.13)

(Notice that
∑
fiWi = 0.)

Theorem 1. The delta-method approximate standard deviation of Ê = U ′f̂/V ′f̂ is

sd(Ê) =
1√
N
|E| · σf (W ), (3.14)

where E = U ′f/V ′f and

σ2
f (W ) =

n∑
i=1

fiW
2
i . (3.15)

The approximate coefficient of variation sd(Ê)/|E| of Ê is

cv(Ê) = σf (W )
/√

N. (3.16)

Proof. From (3.5) we compute the joint moments of U ′f̂ and V ′f̂ ,

(
U ′f̂

V ′f̂

)
∼

(Uf
Vf

)
,

1

N

 σ2
f (U) σf (U, V )

σf (U, V ) σ2
f (V )


 , (3.17)

with σ2
f (U) =

∑
fi(Ui−Uf )2, σf (U, V ) =

∑
fi(Ui−Uf )(Vi−Vf ), and σ2

f (V ) =
∑
fi(Vi−Vf )2.

Then

Ê =
U ′f̂

V ′f̂
= E · 1 + ∆̂U

1 + ∆̂V

[
∆̂U =

U ′f̂ − Uf
Uf

, ∆̂V =
V ′f̂ − Vf

Vf

]
.
= E ·

(
1 + ∆̂U − ∆̂V

)
,

(3.18)

so sd(Ê2)
.
= E2 var(∆̂U − ∆̂V ), which, again using (3.9), gives Theorem 1. �

The trouble here, as will be shown, is that sd(Ê) or cv(Ê) may easily become unmanage-

ably large. Empirical Bayes methods require sampling on the x scale, which can be grossly
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inefficient for estimating functions of θ.

Hypothetically, the Xk’s in (3.6) are the observable halves of pairs (Θ, X),

(Θk, Xk)
ind∼ g(θ)fθ(x), k = 1, 2, . . . , N. (3.19)

If the Θk’s had been observed, we could estimate g directly as ḡ = (ḡ1, ḡ2, . . . , ḡm)′,

ḡj = #{Θk = θj}/N, (3.20)

leading to the direct Bayes estimate

Ē = u′ḡ/v′ḡ. (3.21)

Ē would usually be less variable than Ê (3.11) (and would automatically enforce possible

constraints on E such as monotonicity in xk). A version of Theorem 1 applies here. Now we

define

ug =

m∑
j=1

gjuj , vg =

m∑
j=1

gjvj , and w = u/ug − v/vg. (3.22)

Theorem 2. For direct Bayes estimation (3.21), the delta-method approximate standard

deviation of Ē is

sd
(
Ē
)

=
1√
N
|E| · σg(w), (3.23)

where

σ2
g(w) =

m∑
j=1

gjw
2
j ; (3.24)

Ē has approximate coefficient of variation

cv
(
Ē
)

= σg(w)
/√

N. (3.25)

The proof of Theorem 2 is the same as that for Theorem 1.
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Table 1: Standard deviation and coefficient of variation of E{t(θ)|x = 2.5} (for N = 1); for the
three parameters (3.26), with g and f as in Figure 1; sdf from Theorem 1 (3.14); sdd for direct Bayes
estimation, Theorem 2 (3.23); sdx from the regularized f -modeling of Section 4, Theorem 3 (4.8).

N1/2 sd N1/2 cv

t(θ) E{t|x = 2.5} sdf sdd sdx cvf cvd cvx

parameter (1) 2.00 8.74 3.38 2.83 4.4 1.7 1.4
parameter (2) 4.76 43.4 13.7 10.4 9.1 2.9 2.2
parameter (3) 0.03 43.9 0.53 1.24 1371 16 39

Table 1 concerns the estimation of E{t(θ)|x = 2.5} for the situation shown in Figure 1.

Three different parameters t(θ) are considered:

(1) t(θ) = θ

(2) t(θ) = θ2

(3) t(θ) =


1 if θ ≤ 0

0 if θ > 0.

(3.26)

In the third case, E{t(θ)|x} = Pr{θ ≤ 0|x}. Cvf is
√
N cv(Ê) (3.16) so cvf/

√
N is the

approximate coefficient of variation of Ê, the nonparametric empirical Bayes estimate of

E{t(θ)|x = 2.5}. Cvd is the corresponding quantity (3.25), available only if we could directly

observe the Θk values in (3.19), while cvx is a regularized version of Ê described in the next

section.

Suppose we wish to bound cv(Ê) below some prespecified value c0, perhaps c0 = 0.1.

Then according to (3.16) we need N to equal

N = (cv1 /c0)2, (3.27)

where cv1 is the numerator σf (W ) of (3.16), e.g., cvf in Table 1. For the three parameters

(3.26) and for c0 = 0.1, we would require N = 1936, 8281, and 187 million respectively.

The vector W for parameter (3) is seen to take on enormous values in Figure 2, resulting
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Figure 2. W vector for f−Bayes estimation of Prob{theta<=0 | x=2.5}; For the g−f model
of Figure 1; [Actually 'W12' as in Section 4; Dashed curve is W9]
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Figure 2: W vector (3.13) for f -Bayes estimation of Pr{θ ≤ 0|x = 2.5} for the model of Figure 1
(actually W12 as in Section 4; dashed curve is W9).

in σf (W ) = 1370.7 for (3.16). The trouble stems from the abrupt discontinuity of t3 at

θ = 0, which destabilizes U in (3.13). Definition (3.4) implies U ′P = u′. This says that U ′

must linearly compose u′ from the rows of P . But in our example the rows of P are smooth

functions of the form ϕ(xi − θj), forcing the violent cycling of U seen in Figure 2. Section 4

discusses a regularization method that greatly improves the accuracy of using “Bayes rule in

terms of f .”

Table 1 shows that if we could sample on the θ scale, as in (3.20), we would require “only”

25,600 Θk observations to achieve coefficient of variation 0.1 for estimating Pr{θ ≤ 0|x = 2.5};

direct sampling is almost always more efficient than f sampling, but that is not the way

empirical Bayes situations present themselves. The efficiency difference is a factor of 86

for parameter (3), but less than a factor of 3 for parameter (1), t(θ) = θ. The latter is a

particularly favorable case for empirical Bayes estimation, as discussed in Section 6.

The assumption of independent sampling, (3.6) and (3.19), is a crucial element of all

our results. Independence assumptions (often tacitly made) dominate the empirical Bayes

literature, as in Muralidharan et al. (2012), Zhang (1997), Morris (1983), and Efron and

Morris (1975). Non-independence effectively reduces the effective sample size N ; see Chapter

8 of Efron (2010). This point is brought up again in Section 6.
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4 Regularized f-modeling

Fully nonparametric estimation of E = E{t(θ)|x} is sometimes feasible but, as seen in Table 1

of Section 3, it can become unacceptably noisy. Some form of regularization is usually

necessary. A promising approach is to estimate f parametrically according to a smooth

low-dimensional model.

Suppose then that we have such a model, yielding f̂ as an estimate of f (2.3), with mean

vector and covariance matrix

f̂ ∼ (f ,∆(f)/N) . (4.1)

In the nonparametric case (3.9) ∆(f) = D(f), but we expect that we can reduce ∆(f)

parametrically. In any case, the delta-method approximate coefficient of variation for Ê =

U ′f̂/V ′f̂ (3.11) is given in terms of W (3.13):

cv(Ê) =
{
W ′∆(f)W /N

}1/2
. (4.2)

This agrees with (3.16) in the nonparametric situation (3.9) where ∆(f) = diag(f) − ff ′.

The verification of (4.2) is almost indentical to that for Theorem 1.

Poisson regression models are convenient for the smooth parametric estimation of f .

Beginning with an n × p structure matrix X, having rows xi for i = 1, 2, . . . , n, we assume

that the components of the count vector y (3.7) are independent Poisson observations,

yi
ind∼ Poi(µi), µi = exiα for i = 1, 2, . . . , n, (4.3)

where α is an unknown vector of dimension p. Matrix X is assumed to have as its first

column a vector of 1’s.

Let µ+ =
∑n

1 µi and N =
∑n

1 yi, and define

fi = µi/µ+ for i = 1, 2, . . . , n. (4.4)
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Then a well-known Poisson/multinomial relationship says that the conditional distribution

of y given N is

y|N ∼ Multn(N,f) (4.5)

as in (3.8). Moreover, under mild regularity conditions, the estimate f̂ = y/N has asymptotic

mean vector and covariance matrix (as µ+ →∞)

f̂ ∼̇ (f ,∆(f)/N) , (4.6)

where

∆(f) = diag(f)XG−1
f X

′ diag(f)
[
Gf = X ′ diag(f)X

]
; (4.7)

(4.6)–(4.7) are derived from standard generalized linear model calculations. Combining (4.2)

and (4.6) gives a Poisson regression version of Theorem 1.

Theorem 3. The delta-method coefficient of variation for Ê = U ′f̂/V ′f̂ under Poisson

model (4.3) is

cv(Ê) =
{

(W ′X)f (X ′X)−1
f (W ′X)′f/N

}1/2
(4.8)

where

(W ′X)f = W ′ diag(f)X and (X ′X)f = X ′ diag(f)X, (4.9)

with W as in (3.13).

The bracketed term in (4.8), times N , is recognized as the length2 of the projection of W

into the p-dimensional space spanned by the columns of X, carried out using inner product

〈a, b〉f =
∑
fiaibi. In the nonparametric case, X equals the identity I, and (4.8) reduces to

(3.16). As in (3.14), sd(Ê) is approximated by |E| cv(Ê). (Note: Theorem 3 remains valid

as stated if a multinomial model for f̂ replaces the Poisson calculations in (4.7).)

Cvx in Table 1 was calculated as in (4.8), with N = 1. The structure matrix X for the

example in Figure 1 was obtained from the R natural spline function ns(x, df = 5); including

a column of 1’s made X193× 6. The improvements over cvf, the nonparametric coefficients
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of variation, were by factors of 3, 5, and 100 for the three parameters (3.26).

The regularization in Theorem 3 takes place with respect to f and f̂ . Good performance

also requires regularization of the inversion process ĝ = Af̂ (3.2). Going back to the beginning

of Section 3, let

P = LDR′ (4.10)

represent the singular value decomposition of the n × m matrix P , with L the n × m or-

thonormal matrix of left singular vectors, R the m×m orthonormal matrix of right singular

vectors, and D the m×m diagonal matrix of singular values,

d1 ≥ d2 ≥ · · · ≥ dm. (4.11)

Then it is easy to show that the m× n matrix

A = RD−1L′ (4.12)

is the pseudo-inverse of P , which is why we could go from f = Pg to g = Af at (3.2).

(Other pseudo-inverses exist; see (7.1).)

Definition (4.12) depends on P being of full rank m, equivalently having dm > 0 in (4.11).

Whether or not this is true, very small values of dj will destabilize A. The familar cure is to

truncate representation (4.12), lopping off the end terms of the singular value decomposition.

If we wish to stop after the first r terms, we define Rr to be the first r columns of R, Lr the

first r columns of L, Dr the r × r diagonal matrix diag(d1, d2, . . . , dr), and

Ar = RrD
−1
r L′r. (4.13)

In fact, r = 12 was used in Figure 2 and Table 1, chosen to make

m∑
r+1

d2
j

/
m∑
1

d2
j < 10−10. (4.14)
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As in (3.1)–(3.13), let

U ′r = u′Ar, V ′r = v′Ar (4.15)

(u and v stay the same as before),

Er =
U ′rf

V ′rf
, Êr =

U ′rf̂

V ′r f̂
, (4.16)

and

Wr =
Ur∑
fiUri

− Vr∑
fiVri

. (4.17)

Theorem 3 then remains valid, with Wr replacing W . Note: Another regularization method,

which will not be pursued here, is the use of ridge regression rather than truncation in the

inversion process (3.2), as in Hall and Meister (2007).

Table 2: Coefficient of variation and standard deviation (N = 1), for E{t|x = 2.5} as in Table 1; now
using Poisson regression in Theorem 3, with X based on a natural spline with 5 degrees of freedom.
Increasing choice of r, (4.13)–(4.17), decreases bias but increases variability of Ê for parameter (3); g
error from (4.20).

Parameter (1) Parameter(3)

r g error Er cvx sdx Er cvx sdx

3 .464 1.75 1.00 1.75 .021 3.6 .1
6 .254 2.00 1.34 2.68 .027 4.6 .1
9 .110 2.00 1.36 2.73 .031 8.2 .3
12 .067 2.00 1.41 2.83 .032 38.6 1.2
15 .024 2.00 1.39 2.78 .033 494.0 16.1
18 .012 2.00 1.39 2.78 .033 23820.8 783.8
21 .006 2.00 1.40 2.80 .033 960036.4 31688.8

Reducing r reduces Wr, hence reducing (4.9) and the approximate coefficient of variation

of Êr. The reduction can be dramatic. W9 almost disappears compared to W12 in Figure 2.

Table 2 compares various choices of r for parameters (1) and (3) (3.26). The choice turns

out to be unimportant for parameter (1) and crucial for parameter (3).

Why not always choose a small value of r? The trouble lies in possible bias for the

estimation of E = E{t|x}. Rather than the crucial inverse mapping g = Af (3.2), we get an
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approximation

gr = Arf = ArPg

= RrD
−1
r L′rLDR

′g = RrR
′
rg

(4.18)

(the last step following from LDR′ = LrDrR
′
r + L(r)D(r)R

′
(r), with L(r) indicating the last

m − r columns of L, etc.; (4.18) says that gr is the projection of g into the linear space

spanned by the first r columns of R). Then, looking at (4.15)–(4.16),

Er =
U ′rf

V ′rf
=
u′gr
v′gr

, (4.19)

possibly making Êr badly biased for estimating E = u′g/v′g.
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Figure 3. Approximation gr (4.17), with r=6,9,12 ,
for g in Figure 1; heavy blue curve is  g
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Figure 3: Approximation gr (4.18) with r = 6, 9, 12 for g in Figure 1; heavy blue curve is g.

The Er columns of Table 2 show that bias is a problem only for quite small values of r.

However the example of Figure 1 is “easy” in the sense that the true prior g is smooth, which

allows gr to rapidly approach g as r increases, as pictured in Figure 3. The gerror column of

Table 2 shows this numerically in terms of the absolute error

gerror =

m∑
i=1

|gri − gi|. (4.20)
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A more difficult case is illustrated in Figure 4. Here g is a mixture: 90% of a delta function

at θ = 0 and 10% of a uniform distribution over the 31 points θj in θ = (−3,−2.8, . . . , 3); P

and x are as before. Now gerror exceeds 1.75 even for r = 21; gr puts too small a weight on

θ = 0, while bouncing around erratically for θ 6= 0, often going negative.
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Figure 4. True g=.95*delta(0)+.05*Uniform (heavy curve);
Approximation gr (4.17) for r=6,9,12,15,18,21, as labeled
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Figure 4: True g = 0.90 · δ(0) + 0.10 uniform (heavy curve); approximation gr (4.18) for r =
6, 9, 12, 15, 18, 21, as labeled.

We expect, correctly, that empirical Bayes estimation of E{t(θ)|x} will usually be difficult

for the situation of Figure 4. This is worrisome since its g is a reasonable model for familiar

false discovery rate analyses, but see Section 6. Section 5 discusses a different regularization

approach that ameliorates, without curing, the difficulties seen here.

5 Modeling the prior distribution g

The regularization methods of Section 4 involved modeling f , the marginal distribution (2.3)

on the x-space, for example by Poisson regression in Table 2. Here we discuss an alternative

strategy: modeling g, the prior distribution (2.2) on the θ-space. This has both advantages

and disadvantages, as will be discussed.
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We begin with an m× q model matrix Q, which determines g according to

g(α) = eQα−1mφ(α)

[
φ(α) = log

m∑
1

eQjα

]
. (5.1)

(For v = (v1, v2, . . . , vm), ev denotes a vector with components evj ; 1m is a vector of m

1’s, indicating in (5.1) that φ(α) is subtracted from each component of Qα.) Here α is the

unknown q-dimensional natural parameter of exponential family (5.1), which determines the

prior distribution g = g(α). In an empirical Bayes framework, g gives f = Pg (2.6), and the

statistician then observes a multinomial sample y of size N from f as in (3.8),

y ∼ Multn (N,Pg(α)) , (5.2)

from which inferences about g are to be drawn.

Model (5.1)–(5.2) is not an exponential family in y, a theoretical disadvanage compared

to the Poisson modeling of Theorem 3. (It is a curved exponential family, Efron, 1975.) We

can still pursue an asymptotic analysis of its frequentist accuracy. Let

D(g) ≡ diag(g)− gg′, (5.3)

the covariance matrix of a single random draw Θ from distribution g, and define

Qα = D (g(α))Q. (5.4)

Lemma 1. The Fisher information matrix for estimating α in model (5.1)–(5.2) is

I = NQ′αP
′ diag (1/f(α))PQα, (5.5)

where P is the sampling density matrix (2.5), and f(α) = Pg(α).
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Proof. Differentiating log g in (5.1) gives the m× q derivative matrix d log gi/dαk,

d log g

dα
=
[
I − 1mg(α)′

]
Q, (5.6)

so

dg

dα
= diag (g(α))

d log g

dα

= D (g(α))Q = Qα.

(5.7)

This yields df/dα = PQα and

d log f

dα
= diag

(
1

f(α)

)
PQα. (5.8)

The log likelihood from multinomial sample (5.2) is

lα(y) = y′ log f(α) + constant, (5.9)

giving score vector

dlα(y)

dα
= y′

d log f

dα
. (5.10)

Since y has covariance matrix N(diag f − ff ′) (3.9), I, the covariance matrix of the score

vector, equals

I = NQ′αP
′ diag(1/f)(diag f − ff ′) diag(1/f)PQα

= NQ′αP
′ (diag(1/f)− 1n1

′
n

)
PQα.

(5.11)

Finally

1′nPQα = 1′mD(g(α))Q = 0′Q = 0 (5.12)

(using the fact that the columns of P sum to 1), and (5.11) yields the lemma. �

Standard sampling theory says that the maximum likelihood estimate (MLE) α̂ has ap-
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proximate covariance matrix I−1, and that ĝ = g(α̂) has approximate covariance, from (5.7),

cov(ĝ) = QαI−1Q′α. (5.13)

Lemma 2. The approximate covariance matrix for the maximum likelihood estimate g(α̂) of

g in model (5.1)–(5.2) is

cov(ĝ) =
1

N
Qα
[
Q′αP

′ diag (1/f(α))PQα
]−1

Q′α. (5.14)

If we are interested in a real-valued parameter τ = T (g), the approximate standard

deviation of its MLE τ̂ = T (g(α̂)) is

sd(τ̂) =
[
Ṫ ′ cov(ĝ)Ṫ

]1/2
, (5.15)

where Ṫ is the gradient vector dT/dg, evaluated at ĝ. When T (g) is the conditional expec-

tation of a parameter t(θ) (3.5),

T (g) = E {t(θ)|x = xi} = u′g/v′g, (5.16)

we compute

Ṫ (g) = w = (u/ug)− (v/vg) (5.17)

(3.22), and get the following.

Theorem 4. Under model (5.1)–(5.2), the MLE Ê of E{t(θ)|x = xi} has approximate

standard deviation

sd(Ê) = |E|
[
w′ cov(ĝ)w

]1/2
, (5.18)

with w as in (5.17) and cov(ĝ) from (5.14).

We can now compare sd(Ê) from g-modeling (5.18), with the corresponding f -modeling
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Figure 5: Top Standard deviation of E{t|x} as a function of x, for parameter (1) t(θ) = θ (with
N = 1); f -modeling (solid), g-modeling (dashed). Bottom Now for parameter (3), t(θ) = 1 or 0 as
θ ≤ 0 or > 0; using natural spline models, df = 6, for both calculations.

results of Theorem 3. Figure 5 does this with parameters (1) and (3) (3.26) for the example

of Figure 1. Theorem 3, modified as at (4.17) with r = 12, represents f -modeling, now with

X based on ns(x, 6), natural spline with six degrees of freedom. Similarly for g-modeling,

Q = ns(θ, 6) in (5.1); α was chosen to make g(α) very close to the upper curve in Figure 1.

(Doing so required six rather than five degrees of freedom.)

The upper panel of Figure 5 shows f -modeling yielding somewhat smaller standard de-

viations for parameter (1), t(θ) = θ. This is an especially favorable case for f -modeling, as

discussed in Section 6. However for parameter (3), E = Pr{t ≤ 0|x}, g-modeling is far supe-

rior. Note: in exponential families, curved or not, it can be argued that the effective degrees

of freedom of a model equals its number of free parameters; see Remark D of Efron (2004).

The models used in Figure 5 each have six parameters, so in this sense the comparison is fair.

Parametric g-space modeling, as in (5.1), has several advantages over the f -space modeling

of Section 4:

Constraints ĝ = exp(Qα̂−1mφ(α̂)) has all coordinates positive, unlike the estimates seen

in Figure 4. Other constraints such as monotonicity or convexity that may be imposed on

f̂ = P ĝ by the structure of P are automatically enforced, as discussed in Chapter 3 of Carlin
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and Louis (2000).

Accuracy With some important exceptions, discussed in Section 6, g-modeling often yields

smaller values of sd(Ê), as typified in the bottom panel of Figure 5. This is particularly true

for discontinuous parameters t(θ), such as parameter (3) in Table 1.

Simplicity The bias/variance trade-offs involved with the choice of r in Section 4 are

avoided, and in fact there is no need for “Bayes rule in terms of f .”

Continuous formulation It is straightforward to translate g-modeling from the discrete

framework (2.1)–(2.4) into more familiar continuous language. Exponential family model

(5.1) now becomes

gα(θ) = eq(θ)α−φ(α)

[
φ(α) =

∫
eq(θ)α dθ

]
, (5.19)

where q(θ) is a smoothly defined 1×q vector function of θ. Letting fθ(x) denote the sampling

density of x given θ, define

h(x) =

∫
fθ(x)g(θ) (q(θ)− q̄) dθ

[
q̄ =

∫
g(θ)q(θ) dθ

]
. (5.20)

Then the q × q information matrix I (5.5) is

I = N

∫ [
h(x)′h(x)

f(x)2

]
f(x) dx

[
f(x) =

∫
g(θ)fθ(x) dx

]
. (5.21)

A posterior expectation E = E{t(θ)|x} has MLE

Ê =

∫
t(θ)fθ(x)gα̂(θ) dθ

/∫
fθ(x)gα̂(θ) dθ. (5.22)

An influence function argument shows that E has gradient

dE

dα
= E

∫
z(θ)gα(θ) (q(θ)− q̄) dθ, (5.23)
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with

z(θ) =
t(θ)fθ(x)gα(θ)∫
t(ϕ)fϕ(x)gα(ϕ) dϕ

− fθ(x)gα(θ)∫
fϕ(x)gα(ϕ) dϕ

. (5.24)

Then the approximate standard deviation of Ê is

sd(Ê) =

(
dE

dα
I−1dE

dα

′)1/2

, (5.25)

combining (5.21)–(5.24). (Of course the integrals required in (5.25) would usually be done

numerically, implicitly returning us to discrete calculations!)

Modeling the prior Modeling on the g-scale is convenient for situations where the statis-

tician has qualitative knowledge concerning the shape of the prior g. As a familiar example,

large-scale testing problems often have a big atom of prior probability at θ = 0, corresponding

to the null cases. We can accomodate this by including in model matrix Q (5.1) a column

e0 = (0, 0, . . . , 0, 1, 0, . . . , 0)′, with the 1 at θ = 0.

Table 3: Estimating E = Pr{θ = 0|x} in the situation of Figure 4; using g-modeling (5.1) with Q
equal ns(x, 5) augmented with a column putting a delta function at θ = 0. Sd is sd(Ê) (5.25), cv is
the coefficient of variation sd /E. (For sample size N , divide entries by N1/2.)

x −4 −3 −2 −1 0 1 2 3 4

E .04 .32 .78 .94 .96 .94 .78 .32 .04

N1/2· sd .95 3.28 9.77 10.64 9.70 10.48 9.92 3.36 .75
N1/2· cv 24.23 10.39 12.53 11.38 10.09 11.20 12.72 10.65 19.21

Such an analysis was carried out for the situation in Figure 4, where the true g equaled

0.9e0 +0.1·uniform. Q was taken to be the natural spline basis ns(θ, 5) augmented by column

e0, a 31× 6 matrix. Table 3 shows the results for t = e0, that is, for

E = E{t|x} = Pr{θ = 0|x}. (5.26)

The table gives E and sd(Ê) (5.18) for x = −4,−3, . . . , 4 (N = 1), as well as the coefficient

of variation sd(Ê)/E.
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The results are not particularly encouraging: we would need sample sizes N on the order

of 10,000 to expect reasonably accurate estimates Ê (3.27). On the other hand, f -modeling

as in Section 4 is hopeless here. Section 6 has more to say about false discovey rate estimates

(5.26).
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Figure 6: MLE nonnull distribution, estimated from a sample of N = 5000 X values from f
corresponding to true g in Figure 4; estimated atom at θ = 0 was 0.92.

A random sample of N = 5000 X values was drawn from the distribution f = Pg

corresponding to the true g in Figure 4 (with P based on the normal density ϕ(xi − θj)

as before), giving count vector y (3.7). Numerical maximization yielded α̂, the MLE in

model (5.1)–(5.2), Q as in Table 3. The estimate ĝ = g(α̂) put probability 0.920 at θ = 0,

compared to true value 0.903, with nonnull distribution as shown in Figure 6. The nonnull

peaks at θ = ±2 were artifacts of the estimation procedure. On the other hand, ĝ correctly

put roughly equal nonnull probability above and below 0. This degree of useful but crude

inference should be kept in mind for the genuine data examples of Section 6, where the truth

is unknown.

Our list of g-modeling advantages raises the question of why f -modeling has dominated

empirical Bayes applications. The answer — that a certain class of important problems is

more naturally considered in the f domain — is discussed in the next section. Theoretically, as

opposed to practically, g-modeling has played a central role in the empirical Bayes literature.
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Much of that work involves the nonparametric maximum likelihood estimation of the prior

distribution g(θ), some notable references being Laird (1978), Zhang (1997), and Jiang and

Zhang (2009). Parametric g-modeling, as discussed in Morris (1983) and Casella (1985),

has been less well-developed. A large part of the effort has focused on the “normal-normal”

situation, normal priors with normal sampling errors, as in Efron and Morris (1975), and

other conjugate situations. Chaper 3 of Carlin and Louis (2000) gives a nice discussion of

parametric empirical Bayes methods, including binomial and Poisson examples.

6 Classic empirical Bayes applications

Since its post-war emergence (Good and Toulmin, 1956; James and Stein, 1961; Robbins,

1956), empirical Bayes methodology has focused on a small set of specially structured situa-

tions: ones where certain Bayesian inferences can be computed simply and directly from the

marginal distribution of the observations on the x-space. There is no need for g-modeling

in this framework, or for that matter any calculation of ĝ at all. False discovery rates and

the James–Stein estimator fall into this category, along with related methods discussed in

what follows. Though g-modeling is unnecessary here, it will still be interesting to see how

it performs on the classic problems.

Robbins’ Poisson estimation example exemplifies the classic empirical Bayes approach:

independent but not identically distributed Poisson variates

Xk
ind∼ Poi(Θk) k = 1, 2, . . . , N, (6.1)

are observed, with the Θk’s notionally drawn from some prior g(θ). Applying Bayes rule with

the Poisson kernel e−θθx/x! shows that

E{θ|x} = (x+ 1)fx+1/fx, (6.2)

where f = (f1, f2, . . . ) is the marginal distribution of the X’s. (This is an example of
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(3.5), Bayes rule in terms of f ; defining ei = (0, 0, . . . , 1, 0, . . . , 0)′ with 1 in the ith place,

U = (x+ 1)ex+1, and V = ex.) Letting f̂ = (f̂1, f̂2, . . . ) be the nonparametric MLE (3.10),

Robbins’ estimate is the “plug-in” choice

Ê{θ|x} = (x+ 1)f̂x+1/f̂x, (6.3)

as in (3.11). Brown et al. (2013) use various forms of semi-parametric f -modeling to improve

on (6.3).

The prehistory of empirical Bayes applications notably includes the missing species prob-

lem; see Section 11.5 of Efron (2010). This has the Poisson form (6.1), but with an inference

different than (6.2) as its goal. Fisher, Corbet and Williams (1943) employed parameterized

f -modeling as in Section 4, with f the negative binomial family. Section 3.2.1 of Carlin and

Louis (2000) follows the same route for improving Robbins’ estimator (6.3).

Tweedie’s formula (Efron, 2011) extends Robbins-type estimation of E{θ|x} to general

exponential families. For the normal case

θ ∼ g(·) and x|θ ∼ N (θ, 1), (6.4)

Tweedie’s formula is

E{θ|x} = x+ l′(x) where l′(x) =
d

dx
log f(x), (6.5)

with f(x) the marginal distribution of X. As in (6.2), the marginal distribution of X deter-

mines E{θ|x}, without any specific reference to the prior g(θ).

Given observations Xk from model (6.4),

Xk ∼ N (Θk, 1) for k = 1, 2, . . . , N, (6.6)

the empirical Bayes estimation of E{θ|x} is conceptually straightforward: a smooth estimate
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f̂(x) is obtained from the Xk’s, and its logarithm l̂(x) differentiated to give

Ê{θ|x} = x+ l̂′(x), (6.7)

again without explicit reference to the unknown g(θ). Modeling here is naturally done on

the x-scale. (It is not necessary for the Xk’s to be independent in (6.6), or (6.1), although

dependence decreases the accuracy of Ê; see Theorem 8.4 of Efron (2010).)
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Figure 7: Prostate data Left panel shows estimates of E{θ|x} from Tweedie’s formula (solid curve),
f -modeling (circles), and g-modeling (dots). Right panel compares standard deviations of Ê{θ|x}, for
Tweedie estimates (dots), f -modeling (dashed curve), and g-modeling (solid curve); reversals at far
right are computational artifacts.

Figure 7 concerns an application of Tweedie’s formula to the prostate data, the output

of a microarray experiment comparing 52 prostate cancer patients with 50 healthy controls

(Efron, 2010, Sect. 2.1). The genetic activity of N = 6033 genes was measured for each

man. Two-sample tests comparing patients with controls yielded z-values for each gene,

X1, X2, . . . , XN , theoretically satisfying

Xk ∼ N (0, 1) (6.8)
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under the null hypothesis that gene k is equally active in both groups. Of course the experi-

menters were searching for activity differences, which would manifest themselves as unusually

large values |Xk|. Figure 2.1 of Efron (2010) shows the histogram of the Xk values, looking

somewhat like a long-tailed version of a N (0, 1) density.

The “smooth estimate” f̂(x) needed for Tweedie’s formula (6.7) was calculated by Poisson

regression, as in (4.3)–(4.7). The 6033 Xk values were put into 193 equally spaced bins,

centered at x1, x2, . . . , x193, chosen as in (2.8) with yi being the number in bin i. A Poisson

generalized linear model (4.3) then gave MLE f̂ = (f̂1, f̂2, . . . , f̂193). Here the structure

matrix X was the normal spline basis ns(x, df = 5) augmented with a column of 1’s. Finally,

the smooth curve f̂(x) was numerically differentiated to give l̂′(x) = f̂ ′(x)/f̂(x) and Ê =

x+ l̂′(x).

Tweedie’s estimate Ê{θ|x} (6.7) appears as the solid curve in the left panel of Figure 7.

It is nearly zero between −2 and 2, indicating that a large majority of genes obey the null

hypothesis (6.7) and should be estimated to have θ = 0. Gene 610 had the largest observed

z-value, X610 = 5.29, and corresponding Tweedie estimate 4.09.

For comparison, Ê{θ|x} was recalculated both by f -modeling as in Section 4 and g-

modeling as in Section 5 (with discrete sampling distributions (2.4)–(2.6) approximated by

Xk ∼ N (Θk, 1), Θk being the “true effect size” for gene k); f -modeling used X and f̂ as

just described, giving Êf = U ′rf̂/V
′
r f̂ , Ur and Vr as in (4.19), r = 12; g-modeling took

θ = (−3,−2.8, . . . , 3) and Q = (ns(θ, 5),1), yielding ĝ = g(α̂) as the MLE from (5.1)–(5.2).

(The R nonlinear maximizer nlm was used to find α̂; some care was needed in choosing the

control parameters of nlm. We are paying for the fact that the g-modeling likelihood (5.2)

is not an exponential family.) Then the estimated posterior expectation Êg was calculated

applying Bayes rule with prior ĝ. Both Êf and Êg closely approximated the Tweedie estimate.

Standard deviation estimates for Êf (dashed curve, from Theorem 3 with f̂ replacing f in

(4.9)) and Êg (solid curve, from Theorem 4) appear in the right panel of Figure 7; f -modeling

gives noticeably lower standard deviations for E{θ|x} when |x| is large.

The large dots in the right panel of Figure 7 are bootstrap standard deviations for the
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Tweedie estimates Ê{θ|x}, obtained from B = 200 nonparametric bootstrap replications,

resampling the N = 6033 Xk values. These closely follow the f -modeling standard deviations.

In fact Ê∗f , the bootstrap replications of Êf , closely matched Ê∗ for the corresponding Tweedie

estimates on a case-by-case comparison of the 200 simulations. That is, Êf is numerically

just about the same as the Tweedie estimate, though it is difficult to see analytically why

this is the case, comparing formulas (4.16) and (6.7). Notice that the bootstrap results for

Êf verify the accuracy of the delta-method calculations going into Theorem 3.

Among empirical Bayes techniques, the James–Stein estimator is certainly best known.

Its form,

θ̂ = X̄ + [1 + (N − 3)/S]
(
Xk − X̄

) [
S =

N∑
1

(
Xk − X̄

)2]
, (6.9)

again has the “classic” property of being estimated directly from the marginal distribution on

the x-scale, without reference to g(θ). The simplest application of Tweedie’s formula, taking

X in our previous discussion to have rows (1, xi, x
2
i ), leads to formula (6.9); see Section 3 of

Efron (2011).

Perhaps the second most familar empirical Bayes applications relates to Benjamini and

Hochberg’s (1995) theory of false discovery rates. Here we will focus on the local false discov-

ery rate (fdr), which best illustrates the Bayesian connection. We assume that the marginal

density of each observation of Xk has the form

f(x) = π0ϕ(x) + (1− π0)f1(x), (6.10)

where π0 is the prior probability that Xk is null, ϕ(x) is the standard N (0, 1) density

exp(−1
2x

2)/
√

2π, and f1(x) is an unspecified nonnull density, presumably yielding values

farther away from zero than does the null density ϕ.

Having observed Xk equal to some value x, fdr(x) is the probability that Xk represents a

null case (6.8),

fdr(x) = Pr{null|x} = π0ϕ(x)/f(x), (6.11)

the last equality being a statement of Bayes rule. Typically π0, the prior null probability,
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is assumed to be near 1, reflecting the usual goal of large-scale testing: to reduce a vast

collection of possible cases to a much smaller set of particularly interesting ones. In this case,

the upper false discovery rate,

ufdr(x) = ϕ(x)/f(x), (6.12)

setting π0 = 1 in (6.11), is a satisfactory substitute for fdr(x), requiring only the estimation

of the marginal density f(x).

Returning to the discrete setting (2.9), suppose we take the parameter of interest t(θ) to

be

t = (0, 0, . . . , 0, 1, 0, . . . , 0)′, (6.13)

with “1” at the index j0 having θj0 = 0 (j0 = 16 in (2.7)). Then E{t(θ)|xi} equals fdr(xi),

and we can assess the accuracy of a g-model estimate f̂dr(xi) using (5.18), the corollary to

Theorem 4.

Table 4: Local false discovery rate estimates for the prostate data; ûfdr and its standard deviation

estimates sdf obtained from f -modeling; f̂dr and sdg from g-modeling; sdf is substantially smaller
than sdg.

x −4 −3 −2 −1 0 1 2 3 4

ûfdr .060 .370 .840 1.030 1.070 1.030 .860 .380 .050

sdf .014 .030 .034 .017 .013 .021 .033 .030 .009
sdg .023 .065 .179 .208 .200 .206 .182 .068 .013

f̂dr .050 .320 .720 .880 .910 .870 .730 .320 .040

This was done for the prostate data, with the data binned as in Figure 7, and Q =

(ns(θ, 5),1) as before. Theorem 4 was applied with θ as in (2.7). The bottom two lines of

Table 4 show the results. Even with N = 6033 cases, the standard deviations of f̂dr(x) are

considerable, having coefficients of variation in the 25% range.

F -model estimates of fdr fail here, the bias/variance trade-offs of Table 2 being unfavorable

for any choice of r. However, f -modeling is a natural choice for ufdr, where the only task

is estimating the marginal density f(x). Doing so using Poisson regression (4.3), with X =
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(ns(x, 5),1), gave the top two lines of Table 4. Now the standard deviations are substantially

reduced across the entire x-scale. (The standard deviation of ûfdr can be obtained from

Theorem 3, with U = ϕ(xi)1 and V the coordinate vector having 1 in the ith place.)

The top line of Table 4 shows ûfdr(x) exceeding 1 near x = 0. This is the penalty for

taking π0 = 1 in (6.12). Various methods have been used to correct ûfdr, the simplest being

to divide all of its values by their maximum. This amounts to taking π̂0 = 1/maximum,

π̂0 = 1/1.070 = 0.935 (6.14)

in Table 4. (The more elaborate f -modeling program locfdr, described in Chapter 6 of Efron

(2010), gave π̂0 = 0.932.) By comparison, the g-model MLE ĝ put probability π̂0 = 0.852 on

θ = 0.

7 Discussion

The observed data X1, X2, . . . , XN from the empirical Bayes structure (1.1)–(1.2) arrives on

the x scale but the desired Bayesian posterior distribution g(θ|x) requires computations on

the θ scale. This suggests the two contrasting modeling strategies diagrammed in Table 5:

modeling on the x scale, “f -modeling,” permits the application of direct fitting methods,

usually various forms of regression, to the X values, but then pays the price of more intricate

and less stable Bayesian computations. We pay the price up front with “g-modeling,” where

models such as (5.2) require difficult non-convex maximum likelihood computations, while

the subsequent Bayesian computations become straightforward.

Table 5: f -modeling permits familiar and straightforward fitting methods on the x scale but then
requires more complicated computations for the posterior distribution of θ; the situation is reversed
for g-modeling.

Model fitting Bayesian computations
f -modeling direct indirect
g-modeling indirect direct
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The comparative simplicity of model fitting on the x scale begins with the nonparametric

case: f -modeling needs only the usual vector of proportions f̂ (3.10), while g-modeling

requires Laird’s (1978) difficult nonparametric MLE calculations. In general, g-models have

a “hidden” quality that puts more strain on parametric assumptions; f -modeling has the

advantage of fitting directly to the observed data.

There is a small circle of empirical Bayes situations in which the desired posterior in-

ferences can be expressed as simple functions of f(x), the marginal distribution of the X

observations. These are the “classic” situations described in Section 6, and account for

the great bulk of empirical Bayes applications. The Bayesian computational difficulties of f -

modeling disappear here. Not surprisingly, f -modeling dominates practice within this special

circle.
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Figure 8: g-modeling estimates of Pr{|θ| ≥ 1.5|x} for the prostate data. Dashed bars indicate ± one
standard deviation, from Theorem 4.

“Bayes rule in terms of f ,” Section 2, allows us to investigate how well f -modeling per-

forms outside the circle. Often not very well seems to be the answer, as seen in the bottom

panel of Figure 5 for example. G-modeling comes into its own for more general empirical

Bayes inference questions, where the advantages listed in Section 5 count more heavily. Sup-

pose, for instance, we are interested in estimating Pr{|θ| ≥ 1.5|x} for the prostate data.

Figure 8 shows the g-model estimates and their standard deviations from Theorem 4, with

Q = ns(θ, 6) as before. Accuracy is only moderate here, but nonetheless some useful informa-
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tion has been extracted from the data (while, as usual for problems involving discontinuities

on the θ scale, f -modeling is ineffective).

Improved f -modeling strategies may be feasible, perhaps making better use of the kinds

of information in Table 2. A reader has pointed out that pseudo-inverses of P other than A

(3.1) are available, of the form

(P ′BP )−1P ′B. (7.1)

Here the matrix B might be a guess for the inverse covariance matrix of f̂ , as motivated by

generalized least squares estimation. So far, however, situations like that in Figure 8 seem

inappropriate for f -modeling, leaving g-modeling as the only game in town.

Theorems 3 and 4 provide accuracy assessments for f -modeling and g-modeling estimates.

These can be dishearteningly large. In the bottom panel of Figure 5, the “good” choice, g-

modeling, would still require more than N = 20, 000 independent observations Xk to get

the coefficient of variation down to 0.1 when x exceeds 2. More aggressive g-modeling,

reducing the degrees of freedom for Q, improves accuracy, at the risk of increased bias. The

theorems act as a reminder that, outside of the small circle of its traditional applications,

empirical Bayes estimation has an ill-posed aspect that may call for draconian model choices.

(The ultimate choice is to take g(θ) as known, that is, to be Bayesian rather than empirical

Bayesian. In our framework, this amounts to tacitly assuming an enormous amount N of

relevant past experience.)

Practical applications of empirical Bayes methodology have almost always taken Θk and

Xk in (1.1)–(1.2) to be real-valued, as in all of our examples. This is not a necessity of

the theory (nor of its discrete implementation in Section 2). Modeling difficulties mount up

in higher dimensions, and even studies as large as the prostate investigation may not carry

enough information for accurate empirical Bayes estimation.

There are not many big surprises in the statistics literature, but empirical Bayes theory,

emerging in the 1950s, had one of them: that parallel experimental structures like (1.1)–

(1.2) carry within themselves their own Bayesian priors. Essentially, the other N − 1 cases

furnish the correct “prior” information for analyzing each (Θk, Xk) pair. How the statistician
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extracts that information in an efficient way, an ongoing area of study, has been the subject

of this paper.
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