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Abstract

An unknown prior density g(θ) has yielded realizations Θ1,Θ2, . . . ,ΘN . They are unob-
servable, but each Θi produces an observable value Xi according to a known probability mech-
anism, for instance Xi ∼ Poisson(Θi). We wish to estimate g(θ) from the observed sample
X1, X2, . . . , XN . Traditional asymptotic calculations are discouraging, indicating very slow non-
parametric rates of convergence. Here we show that parametric exponential family modeling of
g(θ) can give useful estimates in moderate-sized samples. A variety of real and artificial examples
illustrates the methodology. Covariate information can be incorporated into the deconvolution
process, leading to a more detailed theory of Generalized Linear Mixed Models.

Keywords: g-modeling, generalized mixed models, exponential family models, Fourier deconvo-
lution, frailty

1 Introduction

We are interested in the following situation: an unknown probability density g(θ) yields an unob-
served random sample of realizations Θ1,Θ2, . . . ,ΘN ,

Θi
iid∼ g(θ), i = 1, 2, . . . , N ; (1.1)

each Θi independently produces an observed random variable Xi according to a known family of
probability densities for Xi given Θi,

Xi
ind∼ pi(Xi|Θi); (1.2)

finally, from the observed sample X = (X1, X2, . . . , XN ) we wish to estimate the prior density g(θ).
In the second example of Section 4, Xi is a binomial variate, observed after ni independent

draws each of probability Θi,
Xi ∼ Binom(ni,Θi), (1.3)

so pi(xi|θi) is the corresponding binomial density function, a discrete density in this case. The ni
differ, which is why we need the extra subscript on pi(·|·).

There are at least two reasons to be interested in estimating the prior density g(θ). First of all,
we may want to learn ensemble properties such as E{Θ} or Pr{Θ = 0}. This is the case in the first
example of Section 4, where the Θi are effect sizes in a microarray experiment and Pr{Θ = 0} is
the proportion of “null genes”. Empirical Bayes calculations, for instance of Pr{Θi = 0|Xi ≥ 3},
provide the second reason, as emphasized in Efron (2014).
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There is an impressive theoretical literature on the deconvolution problem, as in Laird (1978),
Fan (1991), Hall and Meister (2007), and Butucea and Comte (2009), mostly focused on the additive
model,

Xi = Θi + εi, (1.4)

where the εi are an i.i.d. sample from a known density; typically

εi
ind∼ N (0, 1) (1.5)

so
Xi ∼ N (Θi, 1). (1.6)

The results are discouraging: asymptotic rates of convergence, of estimates ĝ(θ) to g(θ), are much
slower than N−1/2, as slow as (logN)−1 under general conditions. See for example Carroll and Hall
(1988). A good part of the discouragement relates to nonparametric modeling of g(θ), allowing its
fine structure to dictate convergence rates.

A more aggressive modeling approach, yielding more optimistic results, is taken here. Section 2
and Section 3 discuss low-parameter exponential family models for the prior density g(θ). Examples,
both genuine and artificial, appear in Sections 2 through 6. They show the deconvolution problem
as being difficult but feasible, at least in the modern “big data” context of sample sizes N in the
hundreds or thousands.

Section 5 extends (1.1)–(1.2) to the situation where, in addition to Xi, the statistician observes
a covariate vector ui, the observed data being pairs

(Xi, ui), i = 1, 2, . . . , N. (1.7)

This brings the deconvolution problem into the realm of “frailty” and generalized linear mixed
models.

Let Xi denote the marginal density of Xi under model (1.1)–(1.2),

fi(xi) =

∫
pi(Xi|θi)g(θi) dθi, (1.8)

the integral being taken over the Θ space T . Effectively, the statistician only observes Xi
ind∼ fi(·) for

i = 1, 2, . . . , N . Another approach to the deconvolution problem is to directly model the densities fi
(called “f -modeling” in Efron, 2014). The elegant Fourier deconvolution method of Stefanski and
Carroll (1990), applying to the additive situation (1.4), is featured in Section 6, where efficiency
comparisons are made between f -modeling and the exponential family “g-modeling” approach.
Most of the derivations are deferred to Section 7, Proofs and details.

Our interest here is in the practical aspects of the deconvolutuion problem, where theoretical
considerations — these being mainly of a standard nature in our exponential family framework —
are of secondary concern. The label “Bayes deconvolution problem” is intended to emphasize the
more general nature of situation (1.1)–(1.2) compared to (1.4) or (1.6). The likelihood methodology
described in Section 2 accommodates a wide variety of applied problems, as the examples will show.

2 Likelihood and deconvolution

We will pursue a likelihood approach to the Bayes deconvolution problem (1.1)–(1.2), with the prior
g(θ) modeled by an exponential family of densities on the Θ space T . To simplify the presentation
it is assumed that T is a finite, discrete set,

T = {θ1, θ2, . . . , θm}. (2.1)
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(This is a convenience, not a necessity; see Remark A of Section 7.)
The prior g(θ) is now an m-vector g = (g1, g2, . . . , gm) specifying probability gj on θj ,

g = g(α) = eQα−φ(α). (2.2)

Here α is a p-dimensional parameter vector while Q is a known m × p structure matrix, say with
jth row Q′j . Notation (2.2) indicates that the jth component of g(α) is

gj(α) = eQ
′
jα−φ(α) for j = 1, 2, . . . ,m, (2.3)

with function φ(α) normalizing g(α) to sum to one,

φ(α) = log

m∑
j=1

eQ
′
jα. (2.4)

Let
pij = pi(Xi|Θi = θj) (2.5)

be the probability that Xi equals its observed value if Θi equals θj , and define Pi as the m-vector
of possible such probabilities for Xi,

Pi = (pi1, pi2, . . . , pim)′. (2.6)

In our discrete setting,the marginal probability (1.8) for Xi becomes

fi(α) =

m∑
j=1

pijgj(α) = P ′ig(α). (2.7)

The log likelihood function for parameter vector α = (α1, α2, . . . , αp)
′ is

li(α) = log fi(α) = logP ′ig(α), (2.8)

whose p-dimensional first derivative vector and p× p-dimensional second derivative matrix,

l̇i(α) =

(
. . .

∂li(α)

∂αh
. . .

)′
and l̈i(α) =

(
. . .

∂2li(α)

∂αh∂αk
. . .

)
, (2.9)

will be needed for the maximum likelihood calculations of Section 3.

Lemma 1. Define
wij(α) = gj(α) (pij/fi(α)− 1) , (2.10)

and let Wi(α) be the m-vector

Wi(α) = (wi1(α), wi2(α), . . . , wim(α))′ . (2.11)

Then
l̇i(α) = Q′Wi(α) (2.12)

and
−l̈i(α) = Q′

{
Wi(α)Wi(α)′ +Wi(α)g(α)′ + g(α)Wi(α)′ − diag (Wi(α))

}
Q; (2.13)

diag(v) indicates a p×p diagonal matrix with diagonal elements obtained from the vector v. (Notice
that the first three bracketed terms are outer products.)
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See Remark B of Section 7 for the derivations. An attractive alternate expression for −l̈i(α)
appears in (7.17), Remark C.

Summing over the N observations Xi, the total log likelihood l(α) =
∑N

i=1 li(α) has

l̇(α) =

N∑
i=1

l̇i(α) = Q′W+(α), (2.14)

where

W+(α) =
N∑
i=1

Wi(α). (2.15)

Similarly,

−l̈(α) = Q′

{
N∑
i=1

Wi(α)Wi(α)′ +W+(α)g(α)′ + g(α)W+(α)′ − diag (W+(α))

}
Q. (2.16)

Lemma 2. The maximum likelihood estimate (MLE) α̂ for α satisfies

Q′W+(α̂) = 0, (2.17)

while −l̈(α̂), the observed Fisher information matrix, equals

−l̈(α̂) = Q′

{
N∑
i=1

Wi(α̂)Wi(α̂)′ − diag (W+(α̂))

}
Q. (2.18)

The proof is immediate from (2.12), (2.13), after noting that the middle two terms in (2.16)
vanish because of (2.17).

Efron (2014) discusses the “i.i.d. case” where pi(·|·) in (1.2) does not depend on i (as in (1.6));
also assuming that X , the space of possible X values, is discrete, say

X = {x1, x2, . . . , xn}. (2.19)

We can then define the n×m matrix P = (pkj),

pkj = p(X = xk|Θ = θj), (2.20)

with the n-vector of marginal probabilities fk(α) given by

f(α) = P g(α). (2.21)

Let y = (y1, y2, . . . , yn)′ be the vector of counts,

yk = #{Xi = xk}; (2.22)

y is a sufficient statistic in the i.i.d. case, having a multinomial distribution of N draws on n
categories with probability vector f(α),

y ∼ Multn (N, f(α)) . (2.23)

Now W+(α) =
∑n

1 ykWk(α), with wkj(α) and Wk(α) as defined in (2.10)–(2.11), k replacing index
i; the observed Fisher information (2.18) becomes

−l̈(α̂) = Q′

{
n∑
k=1

Wk(α̂)ykWk(α̂)′ − diag (W+(α̂))

}
Q. (2.24)
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Lemma 3. In the i.i.d. case (2.23), the expected Fisher information matrix I(α) = Eα{−l̈y(α)}
is

I(α) = Q′

{
n∑
k=1

Wk(α) (Nfk(α))Wk(α)′

}
Q. (2.25)

See Remark C for the derivation. The sufficient vector y is now explicitly denoted in −l̈y(α)
since it is the random quantity in the frequentist calculation of I(α).

The expectation of y ∼ Multn(N, f(α)) is Nf(α). Comparing (2.24) with (2.25), we see that
the latter is the former with each yk replaced by Nfk(α), except that the term diag(W+(α̂)) is
dropped. In fact, we have equality between the expected and observed Fisher information evaluated
at y = Nf(α):

Theorem 1. In the i.i.d. case,

I(α̂) = −l̈Nf(α̂)(α̂) = Q′

{
n∑
k=1

Wk(α̂) (Nfk(α̂))Wk(α̂)′

}
Q. (2.26)

Proof. See Remark C. �

The right-hand side of (2.26) can be thought of as a smoothed version of the observed informa-
tion, where the parametric estimate Nf(α̂) is substituted for the nonparametric value y. There is
no obvious analogue of Theorem 1 for the non-i.i.d. case. In general however it suggests ignoring
the term diag(W+(α̂)) (which in any case has expectation zero, Remark C) in (2.18), and taking

−l̈(α̂)
.
= Q′

{
N∑
i=1

Wi(α̂)Wi(α̂)′

}
Q. (2.27)

This made little numerical difference in our example, and had the benefit that (2.27) was guaranteed
to be non-negative definite.

Figure 1 illustrates an artificial deconvolution problem in which g(θ) is a mixture of one-eighth
uniform over the interval [−3, 3] and seven-eighths N (0, 0.52),

g(θ) =
1

8

I(−3,3)(θ)

6
+

7

8

1√
2πσ2

e−
1
2
θ2

σ2 [σ = 0.5], (2.28)

with normal observations
Xi ∼ N (Θi, 1), i = 1, 2, . . . , N, (2.29)

as in (1.6) (an “i.i.d. case”). The figure graphs g(θ) and the marginal density f(x), the convolution
of g(θ) with N (0, 1). The deconvolution task is to estimate g(θ) based on a sample X1, X2, . . . , XN

from f(x).
Model (2.1)–(2.2) was implemented taking T = (−3,−2.8, . . . , 3), m = 31, and Q from the R

function ns(T ,df=5); that is, Q was a 31× 5 matrix of natural splines over the set T . N = 1000
pairs (Θi, Xi) were independently generated according to (2.28)–(2.29), and MLE α̂ calculated from
the sample (X1, X2, . . . , X1000), giving a maximum likelihood estimate of the m-vector g (2.2),

ĝ = g(α̂) = eQα̂−ψ(α̂). (2.30)

See Remark D for further details.
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Figure 1: Prior g(θ) (solid curve) and marginal density f(x) (dashed) for situation (2.28)–(2.29). Decon-
volution methods aim to estimate g(θ) based on observations from f(x). Dots indicated closest curve to g
(2.28) in 5-parameter exponential family.

All of this was independently repeated 500 times, yielding estimates ĝ(1), ĝ(2), . . . , ĝ(500), with
means and standard deviations of the component values ĝj ,

ḡj =

500∑
b=1

ĝ
(b)
j

/
500 and sdj =

[
500∑
b=1

(
ĝ
(b)
j − ḡj

)2/
499

]1/2
. (2.31)

The vertical bars in Figure 2 plot
ḡj ± sdj (2.32)

versus θj for j = 1, 2, . . . , 31. We see that the ĝ’s were reasonably accurate in estimating g,
successfully capturing its long flat tails. However, some bias is apparent. It comes from the fact
that our five-parameter exponential family of priors does not contain the true prior g(θ) (2.28). The
starred points in Figure 1 show the closest possible member of the five-parameter family to g(θ), say
g̃(θ); see Remark D. In Figure 2 the dashed curve graphing the means ḡj closely approximates g̃j .
This kind of definitional bias is a price we pay for employing low-dimensional parametric families,
the payoff being reduced variability. Figure 9 in Section 6 indicates a substantial payoff in this
case.

3 Regularization and accuracy

The accuracy of a deconvolution estimate obtained from exponential family model (2.2) can be
greatly improved by regularization of the maximum likelihood algorithm. Rather than maximizing
l(α) =

∑
log fi(α) (2.8), we maximize a penalized log likelihood

m(α) = l(α)− s(α). (3.1)
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Figure 2: Vertical bars are ḡj ± sdj (2.32), from 500 MLE estimates ĝ, each based on 1000 observations Xi

(2.28)–(2.29). Solid curve shows true gj values. Dashed line through ḡj values closely follows natural spline
best possible fit curve indicated by points in Figure 1.

Here s(α) is a penalty function that smoothly increases as α moves farther away from the origin.
In our examples,

s(α) = c0‖α‖ = c0

(
p∑

h=1

α2
h

)1/2

, (3.2)

with c0 equal 1 or 2. (The calculations in Figure 2 used c0 = 2.) The effect of this kind of
regularization is to bias α̂ toward the origin and pull g(α̂) toward a flat prior over the Θ space.
Regularization tamps down excursions of the exponent Qα−φ(α) in (2.2), decreasing the variability
of α̂, at the possible expense of increased definitional bias.

The first derivative vector and second derivative matrix of m(α) are

ṁ(α) = l̇(α)− ṡ(α) and m̈(α) = l̈(α)− s̈(α). (3.3)

Let α0 represent the true value of α. Following the usual MLE derivation, the maximizer α̂ of
m(α), that is, the penalized likelihood estimate, satisfies

0 = ṁ(α̂)
.
= ṁ(α0) + m̈(α0)(α̂− α0)

=
(
l̇(α0)− ṡ(α0)

)
+
(
l̈(α0)− s̈(α0)

)
(α̂− α0),

(3.4)

giving

α̂− α0
.
=
(
−l̈(α0) + s̈(α0)

)−1 (
l̇(α0)− ṡ(α0)

)
. (3.5)

But l̇(α0) has mean vector and covariance matrix (0, I(α0)), and −l̈(α0)
.
= I(α0), so (3.5) leads to

familiar expressions for the mean and covariance of α̂:
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Theorem 2. If α0 is the true value of α, the penalized maximum likelihood estimator α̂ has ap-
proximate mean vector and covariance matrix

α̂− α0 ∼̇
[
− (I(α0) + s̈(α0))

−1 ṡ(α0), (I(α0) + s̈(α0))
−1 I(α0) (I(α0) + s̈(α0))

−1
]

; (3.6)

where I(α0) is the Fisher information matrix for α̂.

Note: For s(α) = c0‖α‖ (3.2),

ṡ(α) = c0
α

‖α‖
and s̈(α) =

c0
‖α‖

(
I − αα′

‖α‖2

)
, (3.7)

I the p× p identity matrix.
Writing (3.6) as

α̂− α0 ∼̇ (Bias(α0),Cov(α0)) , (3.8)

we obtain convenient approximations for the bias and covariance of ĝ = g(α̂):

Corollary 1. In notation (3.6)–(3.8),

g(α̂)− g(α0) ∼̇
(
D(α0)QBias(α0), D(α0)QCov(α0)Q

′D(α0)
)
, (3.9)

where
D(α0) = diag (g(α0))− g(α0)g(α0)

′. (3.10)

The corollary follows from (3.8) and the differential relationship

dg(α)/dα = Q′D(α); (3.11)

see Remark B. In practice, α0 would be replaced by α̂ in (3.6)–(3.9), and I(α0) replaced by −l̈(α̂)
(2.18) (perhaps dropping the term diag(W+(α̂)), as suggested by (2.26), as was done in all the
following examples). Note: D(α0)QBias(α0) does not include possible definitional bias.

The corollary provides quick assessments for the bias and covariance of g(α̂). Figure 3 concerns
a Poisson example in which the Θi were drawn from a chi-square density with 10 degrees of freedom
and Xi|Θi was Poisson with expectation Θi,

Θi ∼ χ2
10 and Xi|Θi ∼ Poi(Θi). (3.12)

One thousand simulations were carried out, each with N = 1000 observations, as in (1.1)–(1.2);
T = {1, 2, . . . , 32}, Q the R language natural spline matrix ns(T ,df=5), and c0 = 1 in (3.2).

Each simulated data set X1, X2, . . . , X1000 yielded a penalized α̂, obtained by maximizing (3.1)
using the R function nlm. Figure 3 compares the empirical standard deviations and biases of g(α̂)
with approximation (3.9), α = α̂. The approximation is excellent for the standard deviations, and
a little too small for the biases. Not all of our results were this good. Figure 9 shows the corollary
somewhat underestimating standard deviations for the example of Figure 1.

Table 1 reports on some of the simulation results. N = 1000 observations per simulation was
not excessive: the coefficient of variation of ĝ(θ) is still large, at least in the tails of the prior g(θ).
Nevertheless, g-modeling consistently yielded useful, if not perfect, inferences for g(θ).
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Table 1: Simulation results for the Poisson example. (Entries for the middle four columns multiplied by
100.)

θ g(θ) Mean Stdev Bias CoefVar

5 5.50 5.59 .37 −.08 .07
10 9.42 9.24 .51 .19 .05
15 3.31 3.31 .32 −.03 .10
20 1.07 1.10 .24 −.11 .23
25 .15 .13 .08 .05 .54

The choice of c0 can be motivated from (3.6), where s̈(α0) is added to the Fisher informa-
tion matrix I(α0). In this sense, the penalty function s(α) is artificially adding s̈(α0) amount of
information (that g(α) is flat). Let Rα equal the ratio of traces,

R(α) = tr (s̈(α)) / tr (I(α)) . (3.13)

From (2.18) and (3.7) we obtain an approximation for the ratio of artificial to genuine information,

R(α̂) = c0(p− 1)/‖α̂‖ · tr

{
Q′

N∑
i=1

Wi(α̂)Wi(α̂)′Q′

}
, (3.14)

again ignoring the diag(W+(α̂)) term; R(α̂) = 0.01 for the Poisson example, suggesting that c0 = 1
was a modest choice for the regularizing constant.

The parametric bootstrap offers a direct, though more laborious, alternative to formula (3.14).
Bootstrap realizations Θ̂∗i , i = 1, 2, . . . , N , are sampled from ĝ = g(α̂). Each Θ∗i gives an X∗i , as in
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(1.2), and then α̂∗ is obtained as the penalized MLE based on X∗1 , X
∗
2 , . . . , X

∗
N . (It helps to start

the nlm search for each α̂∗ from α̂.) Finally, ĝ∗ = g(α̂∗) (2.2), after which the bootstrap covariance
and bias estimates are calculated in the usual way.

4 Two examples

This section pursues applications of g-modeling methods to two biomedical data sets. These are
meant to illustrate deconvolution in action as a practical data-analytic tool.
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Figure 4: Prostate data; histogram shows test statistics Xi for N = 6033 genes. Local false discovery
analysis using locfdr, an f -modeling algorithm, estimated that 98.4% of the genes were null (showing no
difference between cancer and control subjects) and that the null genes had Xi ∼ N (0, 1.062). The 44 genes
having |Xi| > 3.75 had local fdr ≤ 0.2, and were flagged as non-null.

Singh et al. (2002) report on a microarray study comparing 52 prostate cancer patients with
50 healthy controls. Genetic expression levels were measured on N = 6033 genes. A two-sample
test between patients and controls then yielded test statistic Xi for genei, i = 1, 2, . . . , N , with the
histogram in Figure 4 displaying the 6033 Xi values.

Efron (2010) discusses this data set, the prostate data: there, locfdr assessed 98.4% of the
genes as “null”, that is as having the same distribution in patients and controls, and estimated that
the null genes followed the empirical null distribution

Xi ∼ N (0, 1.062). (4.1)

The 44 genes having |Xi| > 3.75 were flagged as probably non-null. (Locfdr is a “f -modeling”
algorithm, related to the methods discussed in Section 6.)

We wish to compare the locfdr results with those obtained from our g-modeling theory. A
reasonable choice for the deconvolution model is

Xi ∼ N (Θi, 1.062). (4.2)
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Here Θi is the effect size for genei; Θi = 0 for the null genes, while of course Singh et al. were
interested in spotting non-null genes, those with large values of |Θi|. For comparison with locfdr,
the variance in (4.2) was chosen to match (4.1). Section 7.4 of Efron (2010) justifies the normal
translation model.

The deconvolution analysis used model (2.1)–(2.2), with T = (−3.6,−3.4, . . . , 3.6), m = 37, and
Q = (I0, Q1), where I0 was a delta function at zero (a m-vector with 1 at θ19 = 0 and 0 elsewhere);
Q1 was the 37 × 5 R natural spline matrix ns(T ,df=5), standardized so that each column had
mean zero and sum of squares one. The R nonlinear maximization function nlm was used to find
α̂, the penalized MLE (3.1), taking s(α) = c0‖α‖, c0 = 1. See Remark D.
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Figure 5: g-modeling estimate of prior g(θ) for the prostate data; probability of null gene Θ = 0 estimated
as 0.947 ± 0.011. Solid curve is estimated density ĝ(θ) for Θ 6= 0; dashed vertical lines indicate ± one
standard deviation.

The penalized MLE estimate of the prior g, ĝ = g(α̂), puts probability 0.947± 0.011 on Θ = 0
(i.e., on θ19 = 0), with the standard deviation computed from formula (3.9). Figure 5 graphs ĝ(θ)
for θ 6= 0, the vertical bars indicating ± one standard deviation. Amidst considerable noise, the
curve indicates that non-null genes, those with Θ 6= 0, have higher density near 0 than farther
away.

Accuracy is better for larger regions of the Θ-space, for instance for

A = {|Θ| > 2}, (4.3)

corresponding to the subset IA = {|θj | > 2} of T . It has estimated probability

P̂r{|Θ| > 2} =
∑
θj∈IA

ĝj = 0.0193± 0.0014, (4.4)

with the standard deviation calculated from (3.9) according to(
v′AD(α̂)QCov(α̂)Q′D(α̂)vA

)1/2
, (4.5)
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where vA is the m-vector having 1 in IA and 0 elsewhere.
The results in Figure 4 and Figure 5 make for an interesting comparison: g-modeling puts

probability 0.947 rather than 0.984 on the null case Θ = 0, but indicates a substantial population
of “low Θ” cases,

P̂r{|Θ| ≤ 2} = 0.982. (4.6)

If “interesting” genes are those with |Θ| > 2, there are about two percent of them according to
(4.4). This does not mean they are easy to identify, as discussed next.

Suppose the statistician is interested in the posterior expectation of some function t(Θi) given
Xi. In our discrete setting (2.1)–(2.5), t(Θ) is represented by a vector

t = (ti, t2, . . . , tm)′ with tj = t(θj).

Bayes rule estimates the posterior expectation as

Êi = Ê {t(Θi)|Xi} =
m∑
j=1

tjpij ĝj

/
m∑
i=1

pij ĝj , (4.7)

pij as in (2.5).
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Figure 6: Solid curve is g-modeling estimate of E{Θi|Xi = x} (4.7) for the prostate data. Dashed curve is
Tweedie’s estimate (4.8), an f -modeling estimate.

The solid curve in Figure 6 graphs Êi for t(Θ) = Θ, that is for the posterior expectation of Θ.
We see that Êi is nearly 0 for |Θi| ≤ 2, reflecting the preponderence of null genes. We don’t obtain
a healthily nonzero Êi until |Θ| exceeds at least 3.

The dashed curve in Figure 3 is “Tweedie’s estimate” (Efron, 2011), an f -modeling construction,

Ê{Θi|Xi} = Xi + f̂ ′(Xi)
/
f̂(Xi), (4.8)

where f̂ is a smooth estimate of density for the X values, and f̂ ′ its derivative. Estimating E{Θ|X}
is a favorable venue for f -modeling, as discussed in Section 6 of Efron (2014).
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Our second biomedical example concerns an intestinal surgery study onN = 800 cancer patients.
In addition to the primary site, surgeons also removed “satellite” nodes for later testing. The data
set comprised pairs

(ni, Xi), i = 1, 2, . . . , 800, (4.9)

where ni is the number of satellites removed and Xi is the number of these found to be malignant.
The ni’s varied from 1 to 40. Nearly 40% of the cases had Xi = 0, but for the remainder of them,
pi = Xi/ni had a roughly uniform distribution over [0, 1], with a small mode at pi = 1.

We assume the binomial model (1.3),

Xi ∼ Binom(ni,Θi), (4.10)

where Θi is the ith patient’s individual probability for any one satellite being malignant. The Θi’s
are unobservable, but we can estimate their density g(θ) using a g-model (2.1)–(2.2). Here we
took T = {0.01, 0.02, . . . , 0.99}, m = 99, Q the 99× 5 natural spline R matrix ns(T ,df=5) (with
columns standardized to have mean 0 and sum of squares 1), and penalty term c0‖α‖ (3.2), c0 = 1.
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sd

Figure 7: Estimated prior density ĝ(θ) for the sugery data. Vertical bars indicate ± one standard deviation,
computed from formula (3.9) with α0 equal the penalized MLE α̂.

Figure 7 shows the penalized maximum likelihood estimate ĝ(θ) for the distribution of Θ. There
is a large mode near Θ = 0, with 50% chance of Θ ≤ 0.1 and the remaining 50% spread almost
evenly over [0.1, 1.0]. The curve was estimated with reasonable accuracy, median coefficient of
variation 0.16, the standard deviation being computed using formula (3.9), α0 = α̂.

A parametric bootstrap simulation was run as a check on formula (3.9): for each of 1000 runs,
800 simulated realizations Θ̂∗i were sampled from density ĝ; each Θ∗i gave an X∗i ∼ Binom(ni,Θ

∗
i ),

with ni the ith sample size in the original data set; finally, α̂∗ was calculated as the penalized MLE
based on X∗1 , X

∗
2 , . . . , X

∗
800, given ĝ∗ = g(α̂∗). Table 2 compares the standard deviations and biases

of the 1000 ĝ∗’s with those from formula (3.9). The agreement is excellent.
Bias looks small in Table 2, but some caution is necessary: this does not include definitional

bias, which may be substantial for the surgery data because of the large proportion of Xi = 0
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Table 2: Satellite binomial analysis. Standard deviation and bias from formula (3.9) (with α0 = MLE)
compared with simulation estimates from 1000 parametric bootstrap replications. (All columns except first
multiplied by 100.)

StDev Bias
θ g(θ) formula simul formula simul

.01 12.048 .887 .967 −.518 −.592

.12 1.045 .131 .139 .056 .071

.23 .381 .058 .065 .025 .033

.34 .779 .096 .095 −.011 −.013

.45 1.119 .121 .117 −.040 −.049

.56 .534 .102 .100 .019 .027

.67 .264 .047 .051 .023 .027

.78 .224 .056 .053 .018 .020

.89 .321 .054 .048 .013 .009

.99 .576 .164 .169 −.008 .008

cases. Adding θ0 = 0 to T resulted in a more L-shaped estimate ĝ, though still with about 50%
probability mass spread fairly evenly over [0.1, 1.0].

5 Covariates and deconvolution

The previous theory carries over to the situation where each observation Xi is accompanied by
an observed covariate vector ui, say of dimension d. Now we assume a one-parameter exponential
family of conditional densities for each Xi, rather than (1.2),

p(xi|ηi) = eη1xi−ψ(ηi)p0(xi), (5.1)

where xi ranges over the sample space of Xi. Here ηi is the “natural” or “canonical” parameter,
with the derivatives of ψ providing moments of Xi,

ψ̇(ηi) ≡ µi = E{Xi|ηi} and ψ̈(ηi) ≡ Vi = Var{Xi|ηi}. (5.2)

(The form of the exponential family can depend on i, pi(xi|ηi), but we will suppress the extra
subscript.)

Letting
ηi = Θi + u′iγ, (5.3)

where Θi is an unobserved realization from g(α) (2.2), and γ an unknown d-dimensional parameter
vector, we observe

Xi ∼ p(xi|ηi) = p(xi|Θi + u′iγ) (5.4)

independently for i = 1, 2, . . . , N , and wish to estimate the (p+d)-parameter vector (α, γ). Without
the Θi’s, (5.3)–(5.4) would be a standard generalized linear model (GLM). With the Θi’s, it amounts
to a generalized linear mixed model (GLMM). Most of the GLMM literature assumes g normal, as
in Waclawiw and Liang (1993), but here we allow the wider specification (2.2). (On the other hand,
the random effect Θi, which is univariate here, is usually allowed to be multivariate in normal-theory
developments.)
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Returning to the discrete setup (2.1), T = {θ1, θ2, . . . , θm), let

ηij = θj + u′iγ, pij = p(Xi|ηij) (5.5)

as in (5.1), and define the m-vector

Pi(γ) = (· · · pij(γ) · · · )′. (5.6)

The marginal probability for observation Xi is then

fi(α, γ) = P ′i (γ)g(α), (5.7)

with g(α) = exp{Qα− ψ(α)} as in (2.2).
We wish to calculate the (p+ d)-vector of first derivations and the (p+ d)× (p+ d) matrix of

second derivatives of li(α, γ) = log fi(α, γ). Because α and γ separate in (5.7), formulas (2.12) for
∂li/∂α and (2.16) for ∂2li/∂α

2 apply as given, after setting pij = pij(γ) in (2.10). All of the other
required calculations are collected in the next lemma.

In accordance with (5.2) and (5.5), define

µij = ψ̇(ηij), Vij = ψ̈(ηij), (5.8)

and
Aij = (Xi − µij)pij , Bij =

[
(Xi − µij)2 − Vij

]
pij . (5.9)

Also let Ai and Bi be the corresponding m-vectors

Ai = (Ai1, Ai2, . . . , Aim)′ and Bi = (Bi1, Bi2, . . . , Bim)′. (5.10)

Lemma 4. In terms of definitions (5.5)–(5.10), we have:

∂li/∂γ = ui
A′i
fi
g, (5.11)

∂2li/∂γ
2 = ui

[
g′Bi
fi
−
(
g′Ai
fi

)2
]
u′i, (5.12)

and

∂2li/∂α∂γ = Q′ diag(g)

(
Im −

Pi
fi
g′
)
Ai
fi
u′i, (5.13)

Im the m×m identity matrix. Here g = g(α), fi = fi(α, γ), etc.; ∂2li/∂γ
2 is a d× d matrix, and

∂2li/∂α∂γ p× d.

See Remark E for the derivations. Summing over i in (5.11)–(5.13) gives the l̈ expressions for
the total likelihood l(α, γ) =

∑
li(α, γ). A Bayesian restatement of these results appears at the

end of Remark E.
A GLMM analysis of the surgery data (4.9) was carried out incorporating four covariates, “sex”,

“age”, “smoke”, and “prog”: sex was coded 0 = female, 1 = male; age in years; smoke coded 0 =
nonsmoker, 1 = smoker; prog a pre-operative prognosis score, with large values more favorable.
The columns of the 800× 4 matrix of covariates u, ith row u′i, were standardized to have mean 0
and variance 1.
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We assume a binomial model
Xi

ind∼ Binom(ni, πi), (5.14)

where
πi = 1/(1 + e−ηi) with ηi = Θi + u′iγ. (5.15)

The change in notation from (4.10) is necessary to accommodate definition (5.3), where now Θi is
a random effect on the logit scale; Θi can be thought of as a frailty parameter, with large values
indicating a patient more prone to malignant satellite nodes. The Θi were assumed drawn from
g(α) = exp{Qα− ψ(α)} (2.2), with T = {0.01, 0.02, . . . , 0.99} and Q = ns(T , df = 5), its columns
standardized to have mean zero and sum of squares one.

Table 3: GLMM analysis of surgery satellite node data. Row 1 : Maximum likelihood estimates (α̂, γ̂).
Rows 2 and 3 : Means and standard deviations from 100 parametric bootstrap simulations. Row 4 : Standard
deviations obtained from Lemmas 2 and 4.

Alpha Gamma
al1 al2 al3 al4 al5 sex age smoke prog

1. MLE −2.67 −10.09 −6.86 −11.23 −1.84 .192 −.078 .089 −.698
2. Mean −3.51 −8.40 −7.11 −11.52 −1.12 .195 −.080 .067 −.694
3. StDev .79 1.16 1.43 .69 .80 .070 .066 .063 .077
4. Formula .79 1.35 1.39 .63 .85 .071 .073 .077 .093

The MLE (α̂, γ̂) in model (2.2), (5.4) was found by numerical maximization of the log likelihood

l(α, γ) =
N∑
i=1

log fi(α, γ) =
N∑
i=1

logP ′i (γ)g(α), (5.16)

using the R function nlm. The top row of Table 3 shows (α̂, γ̂). Rows 2 and 3 give the means and
standard deviations from 100 parametric bootstrap replications, drawing theX∗i ’s from (2.2), (5.14),
(5.15) with (α, γ) = (α̂, γ̂). Some estimation bias is evident, particularly for the first coordinate of
α̂ but this did not translate into large biases for g(α̂).

The observed Fisher information matrix −l̈(α̂, γ̂) was computed using Lemma 2 and Lemma 4,
and inverted to provide estimated standard errors for α̂ and γ̂, row 4 of Table 3. Comparison with
row 3 shows reasonable agreement between formula and simulations, except perhaps for the smoke
and prog coefficients of γ̂ where the formula overestimates variability.

The estimated frailty distribution g(α̂) is a very close match to γ̂ in Figure 7, after transforming
Θi in (5.3) to Figure 7’s probability scale by [1 + exp(−Θi)]

−1. (This is the estimated conditional
distribution of πi in (5.14)–(5.15) given covariate vector γ = 0.) Looking at Table 3, we see that
the sex and prog coefficients are significantly different from zero, with prog a particularly strong
predictor. Figure 8 graphs the conditional distributions of the binomial probability πi in (5.14)–
(5.15) given the best or the worst levels of prog. Taken together, Figure 7 and Figure 8 indicate
large individual differences (frailties) and even larger covariate effects on π, the probability of a
positive node.

6 Fourier deconvolution

Stefanski and Carroll (1990) used Fourier analysis to produce an elegant solution to the “additive”
deconvolution problem (1.4). Here we will discuss their approach in terms of the normal i.i.d.
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Figure 8: Estimated conditional distributions of the binomial parameter πi (5.14)–(5.15), given the best
and worst categories of the covariate prog.

model (1.6), where Xi ∼ N (Θi, 1). In this case the marginal density f(x) =
∫
φ(x − θ)g(θ)dθ (φ

the standard normal density) relates to the prior g(θ) via

F(f) = F(g)e−t
2/2, (6.1)

where F indicates Fourier transform.
The Stefanski–Carroll algorithm begins by smoothing the empirical density of the observed

sample X1, X2, . . . , XN with a “sinc” kernel, giving

f̂(x) =
1

Nλ

N∑
i=1

sinc

(
Xi − x
λ

)
, (6.2)

sinc(x) = sin(x)/x. The deconvoluted density estimate for the prior is then

ĝ(θ) = F−1
{
F
(
f̂
)
et

2/2
}
, (6.3)

F−1 being the inverse Fourier transform. Writing (6.1) as g(θ) = F−1{F(f)et
2/2} motivates (6.3).

A pleasant surprise is that ĝ(θ) in (6.3) can be calculated directly as a kernel estimate from the
sample X1, X2, . . . , XN ,

ĝ(θ) =
1

N

N∑
i=1

kλ(Xi − θ), (6.4)

where the kernel kλ is given by

kλ(x) =
1

π

∫ 1/λ

0
et

2/2 cos(tx) dt. (6.5)

Large values of λ smooth f̂(x) more, reducing variance but possibly increasing bias, and similarly
for ĝ(θ) as an estimator of g(θ).
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Figure 9: Standard deviations of ĝ(θ) for the artificial example (2.28)–(2.29). Solid curve: g-model (2.30),
N = 1000, Q = ns(T , 5), c0 = 1 in (3.7). Dashed curve: nonparametric f -model Fourier estimate (6.4),
λ = 1/3. Dotted curve: parametric f -model using Poisson GLM, structure matrix ns(X , 5).

Fourier deconvolution was applied to the artificial example of Figure 1. The choice λ = 1/3
made the average bias of ĝ(θ) in the simulation experiment that follows about the same as that seen
in the g-modeling simulation of Figure 2. Accuracy, however, was much worse. Figure 9 compares
the standard deviations of ĝ(θ) (6.4) with those obtained using the g-model (2.30). Their median
ratio was 20.4.

Part of the disparity is no more than the difference between nonparametric and parametric
estimation. We can improve Fourier’s performance by using a more efficient smoother at step (6.2).

Returning to the i.i.d. case, where the sample space of observations Xi is X = {x1, x2, . . . , xn},
and the realizations Θi take values in T = {θ1, θ2, . . . , θm}, let kλ be the m×n matrix having jkth
value kλ(xk − θj). We can express the Fourier estimate ĝ = (ĝ1, ĝ2, . . . , ĝm)′ (6.4) as

ĝ = kλf̄ , (6.6)

with f̄ = (f̄1, f̄2, . . . , f̄i)
′ the empirical density that puts weight yk/N on xk.

We can reduce variability by replacing the nonparametric estimate f̄ in (6.6) with a parametric
estimate, say f(β̂). Section 4 of Efron (2014) does this by taking f(β) to be a Poisson GLM. The
“parametric f -model” curve in Figure 9 gives the resulting standard deviation for ĝ = kλf(β̂),
when the GLM structure matrix is ns(X , 5), a natural spline matrix with five degrees of freedom.
Now f -modeling is more competitive with g-modeling (though the f -models had an unpleasant
tendency to go negative in the tails of ĝ).

As a rough summary of recommendations concerning practical deconvolution methods:

• Nonparametric f -modeling is disparaged as overly variable.

• Parametric f -modeling can be attractive in i.i.d. additive noise situations (particularly for
“classic” empirical Bayes problems of the type discussed in Section 6 of Efron, 2014).

18



• Parametric g-modeling performed best in the context of this paper, and has the advantage
of applying to general non-i.i.d. situations such as the binomial example of Section 4 and
Section 5.

7 Proofs and details

The remarks of this section expand on points raised previously in the text.

Remark A. Continuous formulation Instead of the discrete setting (2.1), the sample space T
for Θ can be made continuous, say as an interval of the real line. The definition (2.2) becomes

gθ(α) = eQ
′
θα−φ(α), (7.1)

where Qθ is a smoothly defined p× 1 vector function of θ ∈ T , and φ(α) = log(
∫

exp{Q′θα}dθ).
The development in Section 2 proceeds as before, with subscript j replaced by the continuous

variable θ, and sums replaced by integrals over T , e.g.,

piθ = pi(Xi|Θi = θ) (7.2)

in place of (2.5), and
wiθ(α) = gθ(α) (piθ/fi(α)− 1) (7.3)

in place of (2.10), where fi(α) =
∫
piθgθ(α)dθ.

For any function sθ of θ, define Eα{s} =
∫
sθgθ(α)dθ. Then (2.12) becomes

l̇i(α) =

∫
Qθwiθ(α) dθ = Eα{Qvi(α)} (7.4)

where
viθ(α) = piθ/fi(α)− 1. (7.5)

Using this notation we can re-express (2.13) as

−l̈i(α) = l̇i(α)l̇i(α)′ + l̇i(α)Eα{Q}′ + Eα{Q}l̇i(α)′ − Eα{Qvi(α)Q′}. (7.6)

Summing over the observations i gives w+θ(α) =
∑
wi(α) and

l̇(α) =

∫
T
Qθw+θ(α) dθ (7.7)

as in (2.14), with similar extensions of Lemma 2.
All of this has a more familiar look than the discrete versions of Section 2. However, the

numerical calculation of l̇(α) and l̈(α) will usually get us back to the discrete sums of Lemma 1
and Lemma 2, which are necessary for the numerical implementation of the theory.

Remark B. Lemma 1 Abbreviating gi for gi(α), etc., let ġ be the p×m matrix (∂gj/∂αk), and
likewise ḟi the p× 1 vector (∂fi/∂αk). Then fi = g′Pi (2.7) gives ḟi = ġPi. But

ġ = Q′D
[
D = diag(g)− gg′

]
(7.8)

as in (5.7) of Efron (2014) (where the order of indices is reversed), yielding

l̇i = ḟi/fi = Q′DPi/fi = Q′Wi, (7.9)
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the equality DPi/fi = Wi coming, after a little algebra, by direct comparison with (2.10). This
verifies (2.12).

Differentiating (7.9) shows that the p× p second derivative matrix l̈i is

l̈i = Q′Ẇ ′i , (7.10)

where Ẇi is the p×m matrix (∂wij/∂αk), k = 1, 2, . . . , p and j = 1, 2, . . . ,m. It remains to evaluate
Ẇi. We can write Wi as

Wi = u · v (u = g and v = Pi/fi − 1), (7.11)

the notation indicating coordinatewise multiplication, Wij = uj · vj . The p ×m derivative matrix
d(u · v)/dα is obtained from the identity

d(u · v)

dα
= U̇ diag(v) + V̇ diag(u) (7.12)

where U̇ and V̇ are the p×m matrices (∂Uj/∂αk) and (∂Vj/∂αk).
Letting P̃i = Pi/fi, u and v in (7.11) give, using (7.8)–(7.9),

U̇ = Q′D and V̇ = −Q′DP̃iP̃ ′i , (7.13)

and then
Ẇi = Q′D

{
diag

(
P̃i − 1

)
− P̃iP̃ ′i diag(g)

}
(7.14)

from (7.12). This yields

−l̈i = Q′
{

diag(g)P̃iP̃
′
i − diag

(
P̃i − 1

)
D
}
Q (7.15)

from (7.10). Finally the identities

DP̃i = Wi, diag(g)P̃i = Wi + gi,

and D diag
(
P̃i − 1

)
= diag

(
Wi − gW ′i

) (7.16)

transform (7.15) into expression (2.13) for −l̈i(α).

Remark C. Lemma 3 and Theorem 1 Expression (2.13) can be rewritten in the same form as
(7.6),

−l̈i(α) = l̇i(α)l̇i(α)′ + l̇i(α)
(
g′(α)Q

)
+
(
Q′g(α)

)
l̇i(α)′ +Q′ diag(Wiα)Q. (7.17)

Let E indicate expectation with respect to the “i.i.d. case” model

Xi
iid∼ f(α), i = 1, 2, . . . , N, (7.18)

expression (2.21), with α fixed. Familiar MLE theory says that

E
{
l̇i(α)

}
= 0 and E

{
−l̈i(α)

}
= E

{
l̇i(α)l̇i(α)′

}
. (7.19)

Taking expectations in (7.17) then shows that

E
{
Q′ diag(Wiα)Q

}
= 0, (7.20)
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and that the total expected Fisher information is

I(α) = E

{
N∑
i=1

l̇i(α)l̇i(α)′

}
= E

{
n∑
k=1

l̇k(α)yk l̇k(α)′

}

=

n∑
k=1

l̇k(α) (Nfk(α)) l̇k(α)′ = Q′
{∑

Wk(α) (Nfk(α))Wk(α)′
}
Q,

(7.21)

verifying Lemma 3. (Notice that l̇k(α) is a nonrandom quantity in these calculations.)
Our i.i.d. probability model

α −→ g(α) −→ f(α) = P g(α) −→ y ∼ Multn (N, f(α)) (7.22)

is a curved exponential family (Efron, 1975). In such families, the plug-in estimates of expected
and observed Fisher information are equal, this being the first equality in (2.26).

Remark D. Computational details All of the numerical calculations began by discretizing the
sample space X , for instance to X = {−4.4,−4.2, . . . , 5.4} for the prostate data and the artificial
example of Figure 1, and setting pkj (2.20) equal to the probability that X falls nearest point xk of
X . The columns of structure matrix Q were standardized to have mean zero and sum of squares 1.

The maximum likelihood estimate α̂ was obtained using nlm, the R language nonlinear maxi-
mizer:

α̂ = nlm(qmle,α0, · · · )$est. (7.23)

Here α0 is a starting value while qmle(α, · · · ), available from the author, computes minus the
likelihood of the data for any trial value α. Starting at α0 = 0 worked in our examples, but some
exploration of starting values was done to avoid getting trapped in local minima. Each bootstrap
replication in Table 3 began with α0 equal to the original MLE α̂, and similarly for the simulations
used in Figure 3. The “closest g” in Figure 1 was obtained by setting y = Nf (f = Pg (2.28)),
using nlm to find the maximizing value α̂, and finally taking ĝ = exp{Qα̂− φ(α̂)}.

Estimate of bias and standard deviation for ĝ(θ) were obtained substituting the MLE α̂ for α0

in formula (3.9) (using R function qformula, available from the author).

Remark E. Lemma 4 From log(pij) = ηijxi − ψ(ηij) we compute the gradient vector

d log(pij)

dγ
=
∂ηij
∂γ

(xi − µij) = ui(xi − µij), (7.24)

so
dpij
dγ

= ui(xi − µij)pij = uiAij . (7.25)

Then (5.7), fi = g′Pi, gives ∂fi/∂γ = uig
′Ai and ∂li/∂γ = ug′Ai/fi, verifying (5.11).

Differentiating Aij yields
dAij
dγ

= uiBij , (7.26)

where we have used (7.24) and dµij/dηij = Vij (5.8). Differentiating (7.25) gives d2pij/dγ
2 =

uiBiju
′
i and, from fi = g′Pi,

∂2fi
∂γ2

= ui(g
′Bi)u

′
i. (7.27)
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The identity
∂2li
∂γ2

=
1

fi

∂2fi
∂γ2

− ∂li
∂γ

∂l′i
∂γ
, (7.28)

applied to (5.11) and (7.27) then verifies statement (5.12) of Lemma 4.
Differentiating (∂fi/∂γ)′ = g′Aiu

′
i with respect to α, the p× d matrix ∂2fi/∂α∂γ equals

∂2fi
∂α∂γ

=
∂g′

∂α
Aiu

′
i = Q′DAiu

′
i, (7.29)

where we have used ġ = Q′D (7.8) (remembering that ∂g′/∂α = ġ in our notational conventions).
Finally, the identity

∂2li
∂α∂γ

=
1

fi

∂2fi
∂α∂γ

− ∂li
∂α

∂l′i
∂γ
, (7.30)

along with ∂li/∂α (3.12) and ∂li/∂γ (5.11) result, after some simplification, in statement (5.13) of
Lemma 4.

For the surgery example of Section 5, the cross-term −∂2l(α̂, γ̂) in −l̈(α̂, γ̂) was quite small.
Taking it to be 0, i.e., taking α̂ and γ̂ to be independent, had little effect on row 4 of Table 3.

According to Bayes rule, the posterior distribution of Θi given Xi and ui in (5.3)–(5.5) is

Prα,γ{Θi = θj |Xi, ui} = gjpij/fi, (7.31)

Therefore the factor A′ig/fi in (5.11) equals the posterior expectation

A′ig/fi = Eα,γ{Xi − µi|Xi, ui}, (7.32)

where µi is the random quantity ψ̇(Θi). Likewise

B′ig/fi = Eα,γ{(Xi − µi)2 − Vi}
[
Vi = ψ̈(Θi)

]
. (7.33)

Substituting (7.32)–(7.33) into (5.12) then gives

−∂
2li
∂γ2

= uiEα,γ{Vi|Xi, ui}u′i. (7.34)
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