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Statistical science provides a wide range of concepts and methods for studying situations
subject to unexplained variability. Such considerations enter fields ranging from particle
physics and astrophysics through to genetics and sociology and economics, and even beyond,
and, further, to the associated areas of application like engineering, agriculture and medicine,
in the last especially but by no means only in clinical trials. Successful application hinges on
absorption of statistical thinking into the subject matter and as such depends strongly on the
field in question and on the individual investigators. It is the job of theoretical statisticians
both to be alive to the challenges of specific applications and at the same time to develop
methods and concepts which, with good fortune, will be broadly applicable.

To illustrate the breadth of statistical concepts it is helpful to think of the following
sequence, in practice often encountered in a different order:

1. Clarification of research questions in a complex situation.

2. Specification of the context for study, for example the choice of individuals for entry
into a clinical trial.

3. Issues of metrology: How are key features best measured in the context in question
and how secure is the measurement process?

Considered broadly, there may be many aspects of study design. General aims are to
achieve a reasonable level of precision, an absence of systematic error and economy and
breadth of interpretation, sometimes by answering several interconnected questions in one
study.

• Data collection, possibly including monitoring of data quality.

• Data analysis, usually in various stages from the simple descriptive onwards.

• Summary of conclusions.

• Interpretation: What is the underlying interpretation of what has been found? What
are the relations with other work in the field? What new questions have been raised?

General statistical considerations may enter at all these stages even though in essence they
are all key subject matter concerns.

Phrases often heard nowadays are big data, machine learning, data science, and, most
recently, deep learning. Big data have been around a long time but what, of course, is new is
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the ability to analyse such data other than on a sampling basis. Key issues concern first the
relevance of the data, especially if it is collected in a sense fortuitously. Then there may or
should be worries over quality. Some big data, for example that obtained in the investigation
at CERN leading to the Higgs boson, is of very high quality. In other situations, however,
if a small amount of bad data may be quite misleading a very large amount of bad data
may be exceedingly misleading. The third aspect is more technically statistical. The simpler
methods of precision assessment may appear to indicate a very narrow confidence band on
the conclusions from big data and this narrowness may give a seriously overoptimistic view
of the precision achieved.

The other newer themes involve important ideas coming with heavy computer science
emphasis and often aimed at empirical prediction from noisy data rather than either with
probing the underlying interpretation of the data or with issues of study design or with the
nature of the measurement process.

The theory and practice of computer-age statistics is, for the most part, a case of new
wine in old bottles: the fundamental tenets of good statistical thinking haven’t changed,
but their implementation has. This has been a matter of necessity. Data collection for
a modern scientist can move in seven-league boots thanks to spectacular advancements in
equipment – notable examples include microarrays and DNA sequencers in microbiology,
and robotic telemetry for astronomy. Along with Big Data comes Big Questions, often
thousands of hypothesis testing and estimation problems posed simultaneously demanding
careful statistical discussion.

Statisticians have responded with much more flexible and capacious analysis methods.
These depend of course on the might of modern computation, but also on powerful exten-
sions of classical theories, that shift the burden of mathematical analysis onto computable
algorithms – but demand careful discussion for the formulation of principles. The examples
which follow are too small to qualify as Big Data, but, hopefully, are big enough to get the
idea across.

A study at a pediatric hospital in Guatemala followed some 1800 children over a 12-year
period beginning in 2002 [1]. Ten percent of the children were abandoned by their families
during their stay. The goal of the study was to identify the causes of abandonment. The
key response variable was Time, the number of days from admission to abandonment. For
90% of the children, abandonment was never observed, due to leaving the hospital or the
study period ending, in which case Time was known only to exceed the number of days of
observation. In common terminology, Time was heavily censored.

More than forty possible explanatory factors were measured, only six of which will be
discussed here: Distance, the distance of the child’s home from the hospital; Date, the
date of the childs admission measured in days since the study’s beginning; Age and Sex
of the child; and ALL or AML, indicating that the child was suffering from acute lymp-
hoblastic leukemia or acute myeloid leukemia (a worse prognosis). All of the variables were
standardized. (Note: ALL and AML are two of several diagnoses under consideration, all of
which were considered “others” for this analysis.)

Proportional hazards is a modern regression methodology that allows the fair comparison
of potentially causative factors for a censored response variable [2]. Table 1 shows its output
for the abandonment study. Date for instance has a very strongly negative estimate, indi-
cating that abandonment was decreasing as calendar time went on. Distance was strongly
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Table 1: Proportional hazards analysis of the abandonment data. Estimated Date coefficient
1.660 is strongly negative, indicating decreased abandonment as study progressed.

Estimate Standard z-Value p-Value Bootstrap
Error Standard Error

Distance 0.210 0.072 2.902 0.004 0.068
Date −1.660 0.107 −15.508 0.000 0.088
Age −0.154 0.084 −1.834 0.067 0.082
Sex −0.027 0.076 −0.347 0.729 0.078
ALL 0.146 0.082 1.771 0.077 0.083
AML −0.070 0.081 −0.864 0.387 0.088

positive, suggesting increased abandonment from remote home locations. Neither Age nor
Sex yielded significant p-values, though there is some suggestion that older children did bet-
ter. Likewise, neither ALL or AML achieved significance but, perhaps surprisingly, AML
children seemed better off.

In addition to the parameter estimates, first column of Table 1, proportional hazards
theory also provides approximate standard errors, column 2. The bootstrap [3] was used
as a check. Each bootstrap data set was formed by sampling the 1800 children 1800 times
with replacement ; so child 1 might appear twice, child 2 not at all, child 3 once, etc. Then
the proportional hazards model was run for the bootstrap data set, giving new estimates
for Distance, Date, Age, Sex, ALL, and AML. Two thousand bootstrap data sets were
independently generated, yielding the bootstrap standard errors in column 5 of the table.
For instance, the 2000 bootstrap estimates for Distance had empirical standard deviation
0.068, nearly the same as the theoretical standard error 0.072. With the moderate exception
of Date, the other comparisons were similarly reassuring.

The bootstrap replications can be used to address a variety of other inferential questions.
Figure 1 shows the histogram of the 2000 bootstrap estimates of the difference AML minus
ALL. Only 34 of the 2000 exceed zero, yielding a one-sided bootstrap p-value of 0.017
(= 34/2000) against the null hypothesis of no difference.

The proportional hazards algorithm required perhaps 100 times as much computation
as a standard linear regression, while the bootstrap analysis multiplied the burden by 2000.
Neither theory would have been formulated in the age of mechanical calculation. They
are discussed in Chapters 9 and 10 of [4], along with a suite of other computer-intensive
statistical inference methods.

At a fundamental level, statistical theory concerns learning from experience, especially
from experience that arrives a little bit at a time, perhaps in noisy and partly contradictory
forms. Modern equipment allows modern scientists to cast wider experiential nets. This has
increased the burden on the statistical learning portion of the scientific process. Our next
example, taken from Chapter 6 of [4], shows the learning process in action, using statistical
ideas proposed in the 1950s, but only now routinely feasible.

Figure 2 concerns a study of 844 patients undergoing surgery for stomach cancer. Besides
the removal of the central site, surgeons often remove surrounding lymph nodes, which are
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Figure 1. 2000 bootstrap replications of the difference 
between the AML and ALL proportional hazards coefficients
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Figure 1: 2000 bootstrap replications of difference between AML and ALL proportional hazards
coefficients.

figure 2. Observed proportion p of malignant nodes for 522
patients having p>0; 322 patients (38%) had p=0
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Figure 2: Observed proportion p of malignant nodes for 522 patients having p > 0; 322 patients
(38%) had p = 0, indicated by the large dot.
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subsequently evaluated as positive (malignant) or negative. For patient i, i = 1, 2, . . . , 844,
let

ni = # nodes removed, xi = # nodes positive,

and

pi = xi/ni,

the proportion of positive nodes; ni varied between 1 and 69. The histogram in Figure 2
depicts the 522 patients with pi > 0, i.e., having at least one positive node; 322 of the
patients, about 38%, had pi = 0, represented by the large dot.

It is reasonable to imagine that each patient has a frailty parameter θi, indicating how
prone he or she is to positive nodes, and that we are seeing binomial observations

xi ∼ Binomial(ni, θi);

equivalently, xi is the number of heads observed in ni independent flips of a coin having
probability of heads θi. If the ni’s were very large then pi = xi/ni would nearly equal θi.
However, many of the ni were quite small (eight of them equaling 1) so in fact Figure 2 gives
a badly distorted picture of the distribution of the θi’s.
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figure 3. Estimated prior density for theta, the frailty 
parameter; median value theta=0.09
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Figure 3: Estimated prior density for frailty parameter θ; median value θ = 0.09.

Empirical Bayes methods allow us to recover a good estimate of what a histogram of
the 844 true θi values would look like. We assume that the θi’s have some prior density
g(θ); g(θ) is unknown but assumed to belong to a low-dimensional parametric family. Here
log g(θ) was assumed to be a fifth-order polynomial in θ. Maximizing the likelihood of the
observed data (ni, xi), i = 1, 2, . . . , 844, over the coefficients of the polynomial yielded the
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figure 4. Posterior probabilities of frailty parameter theta
for three hypothetical patients
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Figure 4: Posterior probabilities of frailty parameter θ for three hypothetical patients.

estimate of g(θ) pictured in Figure 3. It shows that most of the frailties are small, 59% less
than 0.2, but there are large ones too, 7% above 0.8.

Having estimated the prior density g(θ), we can employ Bayes rule to calculate the
posterior density of θi given patient i’s observed values ni and xi. This is done for three of
the patients in Figure 4. Patient 1, with ni = 32 and xi = 7, is seen to almost certainly have
θi less than 0.5; Patient 3, with ni = 18 and xi = 17, almost certainly has frailty θi greater
than 0.5; Patient 2, with ni = 6 and xi = 3, could conceivably have almost any value of θi.
This kind of information may be valuable for recommending follow-up therapy that is either
more stringent or less.

The observed data n1 = 32 and x1 = 7 represents direct statistical evidence for Patient
1. It provides, among other things, the direct estimate p1 = 7/32 = 0.22 for θ1. Indirect
evidence, from the other 843 patients, also contributed to the posterior probability density
for Patient 1 seen in Figure 4.

An increased acceptance of indirect evidence is a hallmark of modern statistical practice.
Both frequentist techniques (regression algorithms) and Bayesian methods are combined in
an effort to bring enormous amounts of possibly relevant “other” cases to bear on a single
case of particular interest, i.e., Patient 1 in the nodes study. Avoiding the difficulties and
pitfalls of indirect evidence motivates much of current statistical research.

We emphasize the current high level of fruitful application and methodological develop-
ment. This is, however, anchored in a long history going back in particular to the great early
19th century mathematicians, Gauss and Laplace. Their statistical work was motivated by
concerns over the analysis of astronomical data. Quasi-philosophical disagreements over the
meaning of probability have rumbled on since then. Our attitude is eclectic, but in the last
analysis we see a contrast, not a conflict, between the use of probability to represent in ide-
alized form patterns of variability in the real world and its use to capture the uncertainty of
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our conclusions. Controversy centres mostly on the second and more than one approach may
be fruitful. In the last analysis, however, we are using probability as a measuring instrument
and in some sense it must be well calibrated.

We have worked as statisticians for a combined total of 125 years (72 + 53) and both of
us fully retain our enthusiasm for the field. It has changed enormously over our lifetimes
and no doubt will continue to do so. But at the heart of our subject are core issues about
uncertainty and variability that have both a permanent value and an exciting continuing
challenge that is conceptual, mathematical and computational.
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