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Abstract

The scientific needs and computational limitations of the Twentieth Century fash-
ioned classical statistical methodology. Both the needs and limitations have changed
in the Twenty-First, and so has the methodology. Large-scale prediction algorithms
— neural nets, deep learning, boosting, support vector machines, random forests —
have achieved star status in the popular press. They are recognizable as heirs to the
regression tradition, but ones carried out at enormous scale and on titanic data sets.
How do these algorithms compare with standard regression techniques such as ordinary
least squares or logistic regression? Several key discrepancies will be examined, center-
ing on the differences between prediction and estimation or prediction and attribution
(significance testing.) Most of the discussion is carried out through small numerical
examples.
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1 Introduction

Statistical regression methods go back to Gauss and Legendre in the early 1800s, and es-

pecially to Galton in 1877. During the 20th Century, regression ideas were adapted to a

variety of important statistical tasks: the prediction of new cases, the estimation of regres-

sion surfaces, and the assignment of significance to individual predictors, what I’ve called

“attribution” in the title of this article. Many of the most powerful ideas of 20th Century

statistics are connected with regression: least squares fitting, logistic regression, generalized

linear models, ANOVA, predictor significance testing, regression to the mean.

The 21st Century has seen the rise of a new breed of what can be called “pure prediction

algorithms” — neural nets, deep learning, boosting, support vector machines, random for-

ests — recognizably in the Gauss–Galton tradition, but able to operate at immense scales,

with millions of data points and even more millions of predictor variables. Highly success-

ful at automating tasks like online shopping, machine translation, and airline information,

the algorithms (particularly deep learning) have become media darlings in their own right,

generating an immense rush of interest in the business world. More recently, the rush has

extended into the world of science, a one-minute browser search producing “Deep learning in

biology”; “Computational linguistics and deep learning”; and “Deep learning for regulatory

genomics”.

How do the pure prediction algorithms relate to traditional regression methods? That is

the central question pursued in what follows. A series of salient differences will be examined–

differences of assumption, scientific philosophy, and goals. The story is a complicated one,

with no clear winners or losers; but a rough summary, at least in my mind, is that the pure

prediction algorithms are a powerful addition to the statistician’s armory, yet substantial

further development is needed for their routine scientific applicability. Such development is

going on already in the statistical world, and has provided a welcome shot of energy into our

discipline.

This article, originally a talk, is written with a broad brush, and is meant to be descriptive

of current practice rather than normative of how things have to be. No previous knowledge

of the various prediction algorithms is assumed, though that will sorely underestimate many
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readers.

This is not a research paper, and most of the argumentation is carried out through

numerical examples. These are of small size, even miniscule by current prediction standards.

A certain giganticism has gripped the prediction literature, with swelling prefixes such as

tera-, peta-, and exa- bestowing bragging rights. But small data sets can be better for

exposing the limitations of a new methodology.

An excellent reference for prediction methods, both traditional and modern, is Hastie,

Tibshirani, and Friedman (2009). Very little will be said here about the mechanics of the

pure prediction algorithms: just enough, I hope, to get across the idea of how radically

different they are from their traditional counterparts.

2 Surface plus noise models

For both the prediction algorithms and traditional regression methods, we will assume that

the data d available to the statistician has this structure:

d = {(xi, yi), i = 1, 2, . . . , n} ; (2.1)

here xi is a p-dimensional vector of predictors taking its value in a known space X contained

in Rp, and yi is a real-valued response. The n pairs are assumed to be independent of each

other. More concisely we can write

d = {x,y}, (2.2)

where x is the n× p matrix having xti as its ith row, and y = (y1, y2, . . . , yn)t. Perhaps the

most traditional of traditional regression models is

yi = xtiβ + εi (i = 1, 2, . . . , n), (2.3)

εi
iid∼ N (0, σ2), i.e., “ordinary least squares with normal errors.” Here β is an unknown

p-dimensional parameter vector. In matrix notation,

y = xβ + ε. (2.4)
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For any choice of x in X , model (2.3) says that the response y has expectation µ = xtβ,

so y ∼ N (µ, σ2). The linear surface Sβ,

Sβ = {µ = xtβ, x ∈ X}, (2.5)

contains all the true expectations, but the truth is blurred by the noise terms εi.

More generally, we might expand (2.3) to

yi = s(xi, β) + εi (i = 1, 2, . . . , n), (2.6)

where s(x, β) is some known functional form that, for any fixed value of β, gives expectation

µ = s(x, β) as a function of x ∈ X . Now the surface of true expectations, i.e., the regression

surface, is

Sβ = {µ = s(x, β), x ∈ X} . (2.7)

Most traditional regression methods depend on some sort of surface plus noise formu-

lation (though “plus” may refer to, say, binomial variability). The surface describes the

scientific truths we wish to learn, but we can only observe points on the surface obscured

by noise. The statistician’s traditional estimation task is to learn as much as possible about

the surface from the data d.

Figure 1 shows a small example, taken from a larger data set in Efron and Feldman (1991):

n = 164 male doctors volunteered to take the cholesterol-lowering drug cholostyramine. Two

numbers were recorded for each doctor,

xi = normalized compliance and yi = observed cholesterol decrease. (2.8)

Compliance, the proportion of the intended dose actually taken, ranged from zero to 100%,

−2.25 to 1.97 on the normalized scale, and of course it was hoped to see larger cholesterol

decreases for the better compliers.

A normal regression model (2.6) was fit, with

s(xi, β) = β0 + β1xi + β2x
2
i + β3x

3
i , (2.9)

in other words, a cubic regression model. The black curve is the estimated surface

Ŝ =
{
s
(
x, β̂

)
for x ∈ X

}
, (2.10)
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Figure 1: Black curve is OLS fitted regression to cholostyramine data (dots); vertical bars indicate

± one standard error estimation.

fit by maximum likelihood or, equivalently, by ordinary least squares (OLS). The vertical

bars indicate ± one standard error for the estimated values s(x, β̂), at 11 choices of x,

showing how inaccurate Ŝ might be as an estimate of the true S.

That is the estimation side of the story. As far as attribution is concerned, only β̂0 and β̂1

were significantly nonzero. The adjusted R2 was 0.482, a traditional measure of the model’s

predictive power.

Another mainstay of traditional methodology is logistic regression. Table 1 concerns the

neonate data (Mediratta et al., 2019): n = 812 very sick babies at an African facility were

observed over the course of one year, 605 who lived and 207 who died. Eleven covariates

were measured at entry: gestational age, body weight, apgar score, etc., so xi in (2.1) was

11-dimensional, while yi equaled 0 or 1 as the baby lived or died. This is a surface plus noise

model, with a linear logistic surface and Bernoulli noise.

The 11 predictor variables were standardized to have mean 0 and variance 1, after which

logistic regression analysis was carried out. Table 1 shows some of the output. Columns 1

and 2 give estimates and standard errors for the regression coefficients (which amount to a

description of the estimated linear logistic surface Ŝ and its accuracy).
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Table 1: Logistic regression analysis of neonate data. Significant two-sided p-values indicated for

6 of 11 predictors; estimated logistic regression made 18% prediction errors.

estimate st. error p-value

Intercept −1.549 .457 .001***

gest −.474 .163 .004**

ap −.583 .110 .000***

bwei −.488 .163 .003**

resp .784 .140 .000***

cpap .271 .122 .027*

ment 1.105 .271 .000***

rate −.089 .176 .612

hr .013 .108 .905

head .103 .111 .355

gen −.001 .109 .994

temp .015 .124 .905

Column 3 shows standard two-sided p-values for the 11 variables, six of which are signifi-

cantly nonzero, five of them strongly so. This is the attribution part of the analysis. As far

as prediction is concerned, the fitted logistic regression model gave an estimated probability

pi of death for each baby. The prediction rule

if
pi > 0.25

pi ≤ 0.25
predict

dies

lives
(2.11)

had an empirical error rate of 18%. (Threshold 0.25 was chosen to compensate for the smaller

proportion of deaths.)

All of this is familiar stuff, serving here as a reminder of how traditional regression

analyses typically begin: a description of the underlying scientific truth (the “surface”) is

formulated, along with a model of the errors that obscure direct observation. The pure

prediction algorithms follow a different path, as described in Section 3.

The left panel of Figure 2 shows the surface representation of a scientific icon, Newton’s
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Figure 2: On left, a surface depicting Newton’s Second Law of motion, acceleration = force/mass;

on right, a noisy version.

Second Law of motion,

acceleration =
force

mass
. (2.12)

It is pleasing to imagine the Second Law falling full-born out of Newton’s head, but he was a

master of experimentation. The right panel shows a (fanciful) picture of what experimental

data might have looked like.1

In the absence of genius-level insight, statistical estimation theory is intended as an

instrument for peering through the noisy data and discerning a smooth underlying truth.

Neither the cholostyramine nor the neonate examples is as fundamental as Newton’s Second

Law but they share the goal of extracting dependable scientific structure in a noisy environ-

ment. The noise is ephemeral but the structure, hopefully, is eternal, or at least long-lasting

(see Section 8).

3 The pure prediction algorithms

The 21st Century2 has seen the rise of an extraordinary collection of prediction algorithms:

random forests, gradient boosting, support vector machines, neural nets (including deep learn-

ing), and others. I will refer to these collectively as the “pure prediction algorithms” to dif-

1A half-century earlier, Galileo famously used inclined planes and a water clock to estimate the accelera-

tion of falling objects.
2Actually, the “long 21st Century,” much of the activity beginning in the 1990s.
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ferentiate them from the traditional prediction methods illustrated in the previous section.

Some spectacular successes — machine translation, iPhone’s Siri, facial recognition, champi-

onship chess and Go programs — have elicited a tsunami of public interest. If media attention

is the appropriate metric, then the pure prediction algorithms are our era’s statistical stars.

The adjective “pure” is justified by the algorithms’ focus on prediction, to the neglect of

estimation and attribution. Their basic strategy is simple: to go directly for high predictive

accuracy and not worry about surface plus noise models. This has some striking advantages

and some drawbacks, too. Both advantages and drawbacks will be illustrated in what follows.

A prediction algorithm is a general program for inputting a data set d = {(xi, yi), i =

1, 2, . . . , n} (2.1) and outputting a rule f(x,d) that, for any predictor vector x, yields a

prediction

ŷ = f(x,d). (3.1)

We hope that the apparent error rate of the rule, for classification problems the proportion

of cases where ŷi 6= yi,

êrr = # {f(xi,d) 6= yi} /n (3.2)

is small. More crucially, we hope that the true error rate

Err = E {f(X,d) 6= Y } (3.3)

is small, where (X, Y ) is a random draw from whatever probability distribution gave the

(xi, yi) pairs in d; see Section 6. Random forests, boosting, deep learning, etc. are algorithms

that have well-earned reputations for giving small values of Err in complicated situations.

Besides being very different from traditional prediction methods, the pure prediction

algorithms are very different from each other. The least intricate and easiest to describe

is random forests (Breiman, 2001). For dichotomous prediction problems, like that for the

neonate babies, random forests depends on ensembles of classification trees.

Figure 3 shows a single classification tree obtained by applying the R program Rpart3

to the neonates. At the top of the tree all 812 babies were divided into two groups: those

with cpap (an airway blockage signifier) less than threshold 0.6654 were put into the more-

favorable prognosis group to the left; those with cpap ≥ 0.6654 were shunted right into

3A knockoff of CART (Breiman, Friedman, Olshen, and Stone, 1984).
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|cpap< 0.6654

gest>=−1.672

ment< 0.5
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Figure 3: Classification tree for neonate data. Triangled terminal nodes predict baby lives, circled

predict baby dies; the rule has apparent prediction error rate 17% and cross-validated rate 18%.

the less-favorable prognosis group. The predictor cpap and threshold 0.6654 were chosen to

maximize, among all possible (predictor, threshold) choices, the difference in observed death

rates between the two groups.4 Next, each of the two groups was itself split in two, following

the same Gini criterion. The splitting process continued until certain stopping rules were

invoked, involving very small or very homogeneous groups.

At the bottom of Figure 3, the splitting process ended at eight terminal nodes : the node

at far left contained 412 of the original 812 babies, only 5% of which were deaths; the far right

node contained 41 babies, all of which were deaths. Triangles indicate the three terminal

nodes having death proportions less than the original proportion 25.5%, while circles indicate

proportions exceeding 25.5%. The prediction rule is “lives” at triangles, “dies” at circles.

4More precisely: if nL and nR are the numbers in the left and right groups, and p̂L and p̂R the proportions

of deaths, then the algorithm minimized the Gini criterion nLp̂L(1 − p̂L) + nRp̂R(1 − p̂R). This equals

np̂(1− p̂)− (nLnR/n)(p̂L − p̂R)2, where n = nL + nR and p̂ = (nLp̂L + nRp̂R)/n, so that minimizing Gini’s

criterion is equivalent to maximizing (p̂L − p̂R)2, for any given values of nL and nR.
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If a new baby arrived at the facility with vector x of 11 measurements, the doctors could

predict life or death by following x down the tree to termination.

This prediction rule has apparent error rate 17%, taking the observed node proportions,

0.05, etc., as true. Classification trees have a reputation for being greedy overfitters, but

in this case a ten-fold cross-validation analysis gave error rate 18%, nearly the same. The

careful “traditional” analysis of the neonate data in Mediratta et al. (2019) gave a cross-

validated error rate of 20%. It is worth noting that the splitting variables in Figure 3 agree

nicely with those found significant in Table 1.

So far so good for regression trees, but with larger examples they have earned a reputation

for poor predictive performance; see Section 9.2 of Breiman (2001). As an improvement,

Breiman’s random forest algorithm relies on averaging a large number of bootstrap trees,

each generated as follows:

1. Draw a nonparametric bootstrap sample d∗ from the original data d, i.e., a random

sample of n pairs (xi, yi) chosen with replacement from d.

2. Construct a classification tree from d∗ as before, but choose each split using only a

random subset of p∗ predictors chosen independently from the original p (p∗
.
=
√
p).

Having generated, say, B such classification trees, a newly observed x is classified by following

it down to termination in each tree; finally, ŷ = f(x,d) is determined by the majority of the

B votes. Typically B is taken in the range 100 to 1000.

Random forests was applied to the neonate prediction problem, using R program ran-

domForest, with the results graphed in Figure 4. The prediction error rate5 is shown as a

function of the number of bootstrap trees sampled. In all, B = 501 trees were used but there

was not much change after 200. The overall prediction error rate fluctuated around 17%,

only a small improvement over the 18% cross-validated rate in Figure 3. Random forests is

shown to better advantage in the microarray example of Section 4.

Random forests begins with the p columns of x as predictors, but then coins a host of

new predictors via the splitting process (e.g., “cpap less than or greater than 0.6654”). The

new variables bring a high degree of interaction to the analysis, for instance between cpap

5These are “out of bag” estimates of prediction error, a form of cross-validation explained in the Appendix.
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Figure 4: Random forest prediction error rate for neonate data, as a function of number of

bootstrapped trees; it has cross-validated error rate 17%.

and gest in Figure 3. Though carried out differently, high interactivity and fecund coinage

of predictor variables are hallmarks of all pure prediction algorithms.

4 A microarray prediction problem

Newsworthy breakthroughs for pure prediction algorithms have involved truly enormous data

sets. The original English/French translator tool on Google, for instance, was trained on

millions of parallel snippets of English and French obtained from Canadian and European

Union legislative records. There is nothing of that size to offer here but, as a small step up

from the neonate data, we will consider a microarray study of prostate cancer.

The study involved n = 102 men, 52 cancer patients and 50 normal controls. Each man’s

genetic expression levels were measured on a panel of p = 6033 genes,

xij = activity of jth gene for ith man, (4.1)

i = 1, 2, . . . , 102 and j = 1, 2, . . . , 6033. The n× p matrix x is much wider than it is tall in

this case, “wide data” being the trendy name for p � n situations, as contrasted with the

p� n “tall” data sets traditionally favored.
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Random forests was put to the task of predicting normal or cancer from a man’s mi-

croarray measurements. Following standard procedure, the 102 men were randomly divided

into training and test sets of size 51,6 each having 25 normal controls and 26 cancer patients.

The training data dtrain consists of 51 (x, y) pairs, x a vector of p = 6033 genetic ac-

tivity measurements and y equal 0 or 1 indicating a normal or cancer patient. R program

randomForest yielded prediction rule f(x,dtrain). This rule was applied to the test set,

yielding predictions ŷi = f(xi,dtrain) for the 51 test subjects.
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Figure 5: Test set error rate for random forests applied to prostate cancer microarray study, as a

function of number of bootstrap trees.

Figure 5 graphs the test set error rate as the number of random forest trees increased.

After 100 trees, the test set error rate was 2%. That is, ŷi agreed with yi, the actual

outcome, for 50 of the 51 test set subjects: an excellent performance by anyone’s standards!

This wasn’t a particularly lucky result. Subsequently, random training/test set splits were

carried out 100 times, each time repeating the random forest calculations in Figure 5 and

counting the number of test set errors. The modal number of errors was 2, as seen in Table 2,

with “1 prediction error” occuring frequently.

6It would be more common to choose, say, 81 training and 21 test, but for the comparisons that follow it

will be helpful to have larger test sets.
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Table 2: Number of random forest test set errors in 100 random training/test splits of prostate

data.

errors 0 1 2 3 4 5 7

frequency 3 26 39 12 5 4 1

A classification tree can be thought of as a function f(x) taking values 0 or 1 for x

in its sample space X . The tree in Figure 3 partitions the 11-dimensional space X into 8

rectangular regions, three of which having y = 0 and five having y = 1. A simpler function

is obtained by stopping the division process after the first split, in which case X is divided

into just two regions, cpap < 0.6654 and cpap ≥ 0.6654. Such simple trees are picturesquely

known as “stumps”.
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Figure 6: Test set error for boosting algorithm gbm applied to prostate cancer data. Thin curve

is training set error, which went to zero at step 86.

This brings up another prominent pure prediction method, boosting. Figure 6 shows

the results of applying the R program gbm (for gradient boosting modeling) to the prostate
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cancer prediction problem.7 Gbm sequentially fits a weighted sum of classification trees,

K∑
k=1

wkfk(x), (4.2)

at step k + 1 choosing tree fk+1(x) to best improve the fit. The weights wk are kept small

to avoid getting trapped in a bad sequence. After 400 steps, Figure 6 shows a test sample

error of 4%, that is, two mistakes out of 51; once again an impressive performance. (The

examples in Hastie et al. (2009) show gbm usually doing a little better than random forests.)

In the evocative language of boosting, the stumps going into Figure 6’s construction are

called “weak learners”: any one of them by itself would barely lower prediction errors below

50%. That a myriad of weak learners can combine so effectively is a happy surprise and a

central advance of the pure prediction enterprise. In contrast, traditional methods focus on

strong individual predictors, as with the asterisks in Table 1, a key difference to be discussed

in subsequent sections.

The light curve in Figure 6 traces the gbm rule’s error rate on its own training set. It

went to zero at step 86 but training continued on, with some improvement in test error.

Cross-validation calculations give some hint of when to stop the fitting process — here we

would have done better to stop at step 200 — but it’s not a settled question.

The umbrella package keras was used to apply neural nets/deep learing to the prostate

data. Results were poorer than for random forests or gbm: 7 or 8 errors on the test set

depending on the exact stopping rule. A suppport vector machine algorithm did worse still,

with 11 test set errors.

The deep learning algorithm is much more intricate than the others, reporting “780,736

parameters used”, these being internally adjusted tuning parameters set by cross-validation.

That this is possible at all is a tribute to modern computing power, the underlying enabler

of the pure prediction movement.

7Applied with d = 1, i.e., fitting stumps, and shrinkage factor 0.1.
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5 Advantages and disadvantages of prediction

For those of us who have struggled to find “significant” genes in a microarray study,8 the

almost perfect prostate cancer predictions of random forests and gbm have to come as a

disconcerting surprise. Without discounting the surprise, or the ingenuity of the prediction

algorithms, a contributing factor might be that prediction is an easier task than either

attribution or estimation. This is a difficult suspicion to support in general, but a couple of

examples help make the point.

Regarding estimation, suppose that we observe 25 independent replications from a normal

distribution with unknown expectation µ,

x1, x2, . . . , x25
ind∼ N (µ, 1), (5.1)

and consider estimating µ with either the sample mean x̄ or the sample median x̆. As far

as squared error is concerned, the mean is an overwhelming winner, being more than half

again more efficient,

E{(x̆− µ)2}/E{(x̄− µ)2} .= 1.57. (5.2)

Suppose instead that the task is to predict the value of a new, independent realization

X ∼ N (µ, 1). The mean still wins, but now by only 2%,

E{(X − x̆)2}/E{(X − x̄)2} = 1.02. (5.3)

The reason, of course, is that most of the prediction error comes from the variability of X,

which neither x̄ nor x̆ can cure.9

Prediction is easier than estimation, at least in the sense of being more forgiving. This

allows for the use of inefficient estimators like the gbm stumps, that are convenient for mass

deployment. The pure prediction algorithms operate nonparametrically, a side benefit of not

having to worry much about estimation efficiency.

8See Figure 15.5 of Efron and Hastie (2016).
9This imagines that we have a single new observation to predict. Suppose instead that we have m new

observations X1, X2, . . . , Xm
iid∼ N (µ, 1), and that we wish to predict their mean X̄. With m = 10 the

efficiency ratio is E{(X̄ − x̆)2}/E{(X̄ − x̄)2} = 1.16; with m = 100, 1.46; and with m = ∞, 1.57. One can

think of estimation as the prediction of future mean values.
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For the comparison of prediction with attribution we consider an idealized version of a

microarray study involving n subjects, n/2 healthy controls and n/2 sick patients: any one

subject provides a vector of measurements on N genes, X = (X1, X2, . . . , XN)t, with

Xj
ind∼ N (±δj/2c, 1)

(
c =

√
n/4
)
, (5.4)

for j = 1, 2, . . . , N , “plus” for the sick and “minus” for the healthy; δj is the effect size for

gene j. Most of the genes are null, δj = 0, say N0 of them, but a small number N1 have δj

equal a positive value ∆,

N0 : δj = 0 and N1 : δj = ∆. (5.5)

A new person arrives and produces a microarray of measurementsX = (X1, X2, . . . , XN)t

satisfying (5.4) but without us knowing the person’s healthy/sick status; that is, without

knowledge of the ± value. Question: How small can N1/N0 get before prediction becomes

impossible? The answer, motivated in the Appendix, is that asymptotically as N0 → ∞,

accurate prediction is possible if

N1 = O(N
1/2
0 ), (5.6)

but not below that.

By contrast, the Appendix shows that effective attribution requires

N1 = O(N0). (5.7)

In terms of “needles in haystacks” (Johnstone and Silverman, 2004), attribution needs an

order of magnitude more needles than prediction. The prediction tactic of combining weak

learners is not available for attribution, which, almost by definition, is looking for strong

individual predictors. At least in this example, it seems fair to say that prediction is much

easier than attribution.

The three main regression categories can usefully be arranged in order

prediction · · · estimation · · · attribution, (5.8)

with estimation in a central position and prediction and attribution more remote from each

other. Traditionally, estimation is linked to attribution through p-values and confidence

intervals, as in Table 1. Looking in the other direction, good estimators, when they are
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available, are usually good predictors. Both prediction and estimation focus their output on

the n side of the n × p matrix x, while attribution focuses on the p side. Estimation faces

both ways in (5.8).
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Figure 7: Random forest importance measures for prostate cancer prediction rule of Figure 5,

plotted in order of declining importance.

The randomForest algorithm does attempt to connect prediction and attribution. A-

long with the predictions, an importance measure10 is computed for each of the p predictor

variables. Figure 7 shows the ordered importance scores for the prostate cancer application

of Figure 5. Of the p = 6033 genes, 348 had positive scores, these being the genes that ever

were chosen as splitting variables. Gene 1031 achieved the most importance, with about 25

others above the sharp bend in the importance curve. Can we use the importance scores for

attribution, as with the asterisks in Table 1?

In this case, the answer seems to be no. I removed gene 1031 from the data set, reducing

the data matrix x to 102 × 6032, and reran the randomForest prediction algorithm. Now

10There are several such measures. The one in Figure 7 relates to Gini’s criterion, Section 3. At the

conclusion of the algorithm we have a long list of all the splits in all the bootstrap trees; a single predictor’s

importance score is the sum of the decreases in the Gini criterion over all splits where that predictor was

the splitting variable.
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Table 3: Number of test set errors for prostate cancer random forest predictions, removing top

predictors shown in Figure 7.

# removed 0 1 5 10 20 40 80 160 348

# errors 1 0 3 1 1 2 2 2 0

the number of test set prediction errors was zero. Removing the most important five genes,

the most important 10, . . . , the most important 348 genes had similarly minor effects on the

number of test set prediction errors, as shown in Table 3.

At the final step, all of the genes involved in constructing the original prediction rule

of Figure 5 had been removed. Now x was 102 × 5685, but the random forest rule based

on the reduced data set d = {x,y} still gave excellent predictions. As a matter of fact,

there were zero test set errors for the realization shown in Table 3. The prediction rule at

the final step yielded 364 “important” genes, disjoint from the original 348. Removing all

712 = 348 + 364 genes from the prediction set — so now x was 102 × 5321 — still gave a

random forest prediction rule that made only one test set error.

The “weak learners” model of prediction seems dominant in this example. Evidently

there are a great many genes weakly correlated with prostate cancer, which can be combined

in different combinations to give near-perfect predictions. This is an advantage if prediction

is the only goal, but a disadvantage as far as attribution is concerned. Traditional methods

of attribution operate differently, striving as in Table 1 to identify a small set of causal

covariates (even if strict causality can’t be inferred).

The pure prediction algorithms’ penchant for coining weakly correlated new predictors

moves them in the opposite direction from attribution. Section 9 addresses sparsity — a

working assumption of there being only a few important predictors — which is not at all the

message conveyed by Table 3.
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6 The training/test set paradigm

A crucial ingredient of modern prediction methodology is the training/test set paradigm:

the data d (2.1) is partitioned into a training set dtrain and a test set dtest; a prediction rule

f(x,dtrain) is computed using only the data dtrain; finally, f(x,dtrain) is applied to the cases

in dtest, yielding an honest estimate of the rule’s error rate. But honest doesn’t mean perfect.

This paradigm was carried out in Section 4 for the prostate cancer microarray study,

producing an impressively small error rate estimate of 2% for random forests.11 This seemed

extraordinary to me. Why not use this rule to diagnose prostate cancer based on the vector

of a new man’s 6033 gene expression measurements? The next example suggests how this

might go wrong.

The training and test sets for the prostate cancer data of Section 4 were obtained by

randomly dividing the 102 men into two sets of 51, each with 25 normal controls and 26

cancer patients. Randomization is emphasized in the literature as a guard against bias.

Violating this advice, I repeated the analysis, this time selecting for the training set the 25

normal controls and 26 cancer patients with the lowest ID numbers. The test set was the

remaining 51 subjects, those with the highest IDs, and again contained 25 normal controls

and 26 cancer patients.

In the re-analysis randomForest didn’t perform nearly as well as in Figure 5: f(x,dtrain)

made 12 wrong predictions on dtest with error rate 24%, rather than the previous 2%, as

graphed in Figure 8. The boosting algorithm gbm was just as bad, producing prediction error

rate 28% (14 wrong predictions) as shown in Figure 9.

Why are the predictions so much worse now? It isn’t obvious from inspection but the

prostate study subjects might have been collected in the order listed,12 with some small meth-

odological differences creeping in as time progressed. Perhaps all those weak learners going

into randomForest and gbm were vulnerable to such differences. The prediction literature

uses concept drift as a label for this kind of trouble, a notorious example being the Google flu

11Taking account of the information in Table 2, a better error rate estimate is 3.7%.
12A singular value decomposition of the normal-subject data had second principal vector sloping upwards

with ID number, but this wasn’t true for the cancer patient data.
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Figure 8: randomForest test set error for prostate cancer microarray study, now with training/test

sets determined by early/late ID number. Results are much worse than in Figure 5.

predictor, which beat the CDC for a few years before failing spectacularly.13 Choosing one’s

test set by random selection sounds prudent but it is guaranteed to hide any drift effects.

Concept drift gets us into the question of what our various regression methods, new and

old, are supposed to be telling us. Science, historically, has been the search for the underlying

truths that govern our universe: truths that are supposed to be eternal, like Newton’s laws.

The eternal part is clear enough in physics and astronomy — the speed of light, E = mc2,

Hubble’s law — and perhaps in medicine and biology, too, e.g., DNA and the circulation

of blood. But modern science has moved on to fields where truth may be more contingent,

such as economics, sociology, and ecology.

Without holding oneself to Newtonian standards, traditional estimation and attribution

usually aim for long-lasting results that transcend the immediate data sets. In the surface

plus noise paradigm of Section 2, the surface plays the role of truth–at least eternal enough

to justify striving for its closest possible estimation.

In the neonate example of Table 1 we would hope that starred predictors like gest and

13The CDC itself now sponsors annual internet-based flu forecasting challenges (Schmidt, 2019); see their

past results at predict.cdc.gov.
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Figure 9: gbm test set error, early/late division; compare with Figure 6. Going on to 800 trees

decreased error estimate to 26%. Training set error rate, thin curve, was zero after step 70 but test

error rate continued to decline. See the brief discussion in Criterion 5 of Section 8.

ap would continue to show up as important in future studies. A second year of data was in

fact obtained, but with only n = 246 babies. The same logistic regression model was run for

the year 2 data and yielded coefficient estimates reasonably similar to the year 1 values; see

Table 4. Newton wouldn’t be jealous, but something of more than immediate interest seems

to have been discovered.

Nothing rules out eternal truth-seeking for the pure prediction algorithms, but they

have been most famously applied to more ephemeral phenomena: credit scores, Netflix

Table 4: Comparing logistic regression coefficients for neonate data for year 1 (as in Table 1) and

year 2; correlation coefficient 0.79.

gest ap bwei resp cpap ment rate hr head gen temp

year 1 −.47 −.58 −.49 .78 .27 1.10 −.09 .01 .1 .00 .02

year 2 −.65 −.27 −.19 1.13 .15 .41 −.47 −.02 −.2 −.04 .16
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movie recommendations, facial recognition, Jeopardy! competitions. The ability to extract

information from large heterogeneous data collections, even if just for short-term use, is a

great advantage of the prediction algorithms. Random selection of the test set makes sense

in this setting, as long as one doesn’t accept the estimated error rate as applying too far

outside the limited range of the current data.

Here is a contrived microarray example where all the predictors are ephemeral: n = 400

subjects participate in the study, arriving one per day in alternation between Treatment and

Control; each subject is measured on a microarray of p = 200 genes. The 400 × 200 data

matrix x has independent normal entries

xij
ind∼ N (µij, 1) for i = 1, 2, . . . , 400 and j = 1, 2, . . . , 200. (6.1)

0 100 200 300 400

0
50

10
0

15
0

20
0

 

days (subjects)

ge
ne

s

320

Figure 10: Black line segments indicate active episodes in the hypothetical microarray study.

(Matrix transposed for typographical convenience.)

Most of the µij are null, µij = 0, but occasionally a gene will have an active episode of

30 days during which

µij = 2 for Treatment and − 2 for Control (6.2)
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for the entire episode, or

µij = 2 for Control and − 2 for Treatment (6.3)

for the entire episode. The choice between (6.2) and (6.3) is random, as is the starting

date for each episode. Each gene has expected number of episodes equal 1. The black line

segments in Figure 10 indicate all the active time periods.
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Figure 11: randomForest prediction applied to contrived microarray study pictured in Figure 10.

Left panel : Test set of size 80, selected randomly from 400 days; heavy black curve shows final

estimated test error rate of 19%. Right panel : Test set days 321 to 400; now error rate estimate is

45%. Light dotted curves in both panels are training set errors.

The 400 hypothetical subjects were randomly divided into a training set of 320 and a

test set of 80. A randomForest analysis gave the results seen in the left panel of Figure 11,

with test set error rate 19%. A second randomForest analysis was carried out, using the

subjects from days 1 to 320 for the training set and from days 321 to 400 for the test set.

The right panel of Figure 11 now shows test set error about 45%.

In this case it is easy to see how things go wrong. From any one day’s measurements

it is possible to predict Treatment or Control from the active episode responses on nearby

days. This works for the random training/test division, where most of the test days will

be intermixed with training days. Not so for the early/late division, where most of the test
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days are far removed from training set episodes. To put it another way, prediction is easier

for interpolation than extrapolation.14

What in general can we expect to learn from training/test set error estimates? Going

back to formulation (2.1), the usual assumption is that the pairs (xi, yi) are independent and

identically distributed (i.i.d.) from some probability distribution F on (p + 1)-dimensional

space,

(xi, yi)
iid∼ F for i = 1, 2, . . . , n. (6.4)

A training set d0 of size n0 and a test set d1 of size n1 = n − n0 are chosen (how is

irrelevent under model (6.4)), rule f(x,d0) is computed and applied to d1, generating an

error estimate

Êrrn0 =
1

n1

∑
d1

L (yi, f(xi,d0)) , (6.5)

L some loss function like squared error or counting error. Then, under model (6.4), Êrrn0 is

an unbiased estimate of

Errn0(F ) = EF

{
Êrrn0

}
, (6.6)

the average prediction error of a rule15 f(x,d0) formed from n0 draws from F .

Concept drift can be interpreted as a change in the data-generating mechanism (6.4), say

F changing to some new distribution F̃ , as seems the likely culprit in the prostate cancer

example of Figure 8 and Figure 9.16 Traditional prediction methods are also vulnerable to

such changes. In the neonate study, the logistic regression rule based on the year 1 data had

a cross-validated error rate of 20% which increased to 22% when applied to the year 2 data.

The story is more complicated for the contrived example of Figure 10 and Figure 11,

where model (6.4) doesn’t strictly apply. There the effective predictor variables are ephem-

eral, blooming and fading over short time periods. A reasonable conjecture (but no more

14Yu and Kumbier (2019) propose the useful distinction of “internal testing” versus “external testing”.
15An important point is that “a rule” means one formed according to the algorithm of interest and the

data-generating mechanism, not the specific rule f(x,d0) at hand; see Figure 12.3 of Efron and Hastie (2016).
16Cox, in his discussion of Breiman (2001), says of the applicability of model (6.4): “However, much

prediction is not like this. Often the prediction is under quite different . . . conditions . . . [for example] what

would be the effect on annual incidence of cancer in the United States of reducing by 10% the medical use

of x-rays? etc.”
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than that) would say the weak learners of the pure prediction algorithms are prone to e-

phemerality, or at least are more prone than the “main effects” kind of predictors favored

in traditional methodology. Whether or not this is true, I feel there is some danger in con-

structing training/test sets by random selection, and that their error estimates must be taken

with a grain of statistical salt. To put things operationally, I’d worry about recommending

the random forests prediction rule in Figure 5 to a friend concerned about prostate cancer.

This is more than a hypothetical concern. In their 2019 article, “Deep neural networks

are superior to dermatologists in melanoma image classification”, Brinker et al. demonstrate

just what the title says; the authors are justifiably cautious, recommending future studies for

validation. Moreover, they acknowledge the limitations of using a randomly selected test set,

along with the possible ephemerality of some of the algorithm’s predictor variables. Frequent

updating would be necessary for serious use of any such diagnostic algorithm, along with

studies to show that certain subpopulations weren’t being misdiagnosed.17

7 Smoothness

It was not just a happy coincidence that Newton’s calculus accompanied Newton’s laws of

motion. The Newtonian world, as fleshed out by Laplace, is an infinitely smooth one in which

small changes in cause yield small changes in effect; a world where derivatives of many orders

make physical sense. The parametric models of traditional statistical methodology enforce

the smooth-world paradigm. Looking back at Figure 1 in Section 2, we might not agree

with the exact shape of the cholostyramine cubic regression curve but the smoothness of

the response seems unarguable: going from, say, 1 to 1.01 on the compliance scale shouldn’t

much change the predicted cholesterol decrease.

Smoothness of response is not built into the pure prediction algorithms. The left pa-

nel of Figure 12 shows a randomForest estimate of cholesterol decrease as a function of

normalized compliance. It roughly follows the OLS cubic curve but in a jagged, definitely

unsmooth fashion. Algorithm gbm, in the right panel, gave a less jagged “curve” but still

with substantial local discontinuity.

17Facial recognition algorithms have been shown to possess gender, age, and race biases.

25



●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

−2 −1 0 1 2

−
20

0
20

40
60

80

randomForest 

normalized compliance

ch
ol

es
te

ro
l d

ec
re

as
e

−2 −1 0 1 2

0
20

40
60

80

Boosting algorithm gbm

normalized compliance
ch

ol
es

te
ro

l r
ed

uc
tio

n

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●
●

●●●
●

●●

●

●●●

●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●●
●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●●

●

Figure 12: randomForest and gbm fits to the cholostyramine data of Figure 1, Section 2. Heavy

curve is cubic OLS; dashed curve in right panel is 8th degree OLS fit.

The choice of cubic in Figure 1 was made on the basis of a Cp comparison of polynomial

regressions degrees 1 through 8, with cubic best. Both randomForest and gbm in Figure 12

began by taking x to be the 164 × 8 matrix poly(c,8) (in R notation), with c the vector

of adjusted compliances–an 8th degree polynomial basis. The light dashed curve in the

right panel is the 8th degree polynomial OLS fit, a pleasant surprise being how the gbm

predictions follow it over much of the compliance range. Perhaps this is a hopeful harbinger

of how prediction algorithms could be used as nonparametric regression estimates, but the

problems get harder in higher dimensions.

Consider the supernova data: absolute brightness yi has been recorded for each of n = 75

supernovas, as well as xi a vector of spectral energy measurements at p = 25 different

wavelengths, so the data set is

d = {x,y}, (7.1)

with x 75× 25 and y a 75-vector. After some preprocessing, a reasonable model is

yi
ind∼ N (µi, 1). (7.2)
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It is desired to predict µi from xi.

Our data d is unusually favorable in that the 75 supernovas occured near enough to Earth

to allow straightforward determination of yi without the use of xi. However, this kind of

determination isn’t usually available, while xi is always observable; an accurate prediction

rule

ŷi = f(xi,d) (7.3)

would let astronomers better use Type 1a supernovas as “standard candles” in determining

the distances to remote galaxies.18 In this situation, the smoothness of f(x,d) as a function

of x would be a given.

Algorithms randomForest and gbm were fit to the supernova data (7.1). How smooth or

jagged were they? For any two of the 75 cases, say i1 and i2, let {xα} be the straight line

connecting xi1 and xi2 in R25,

{xα = αxi1 + (1− α)xi2 for α ∈ [0, 1]} , (7.4)

and {ŷα} the corresponding predictions. A linear model would yield linear interpolation,

yα = αyi1 + (1− α)yi2 .

Figure 12 graphs {yα} for three cases: i1 = 1 and i2 = 3, i1 = 1 and i2 = 39, and i1 = 39

and i2 = 65. The randomForest traces are notably eccentric, both locally and globally; gbm

less so, but still far from smooth.19

There is no need for model smoothness in situations where the target objects are naturally

discrete: movie recommendations, credit scores, chess moves. For scientific applications, at

least for some of them, smoothness will be important to a model’s plausibility. As far

as I know, there is no inherent reason that a pure prediction algorithm must give jagged

18The discovery of dark energy and the cosmological expansion of the universe involved treating Type 1a

supernovas as always having the same absolute brightness, i.e., as being perfect standard candles. This isn’t

exactly true. The purpose of this analysis is to make the candles more standard by regression methods,

and so improve the distance measurements underlying cosmic expansion. Efron and Hastie (2016) discuss a

subset of this data in their Chapter 12.
19The relatively smoother results from gbm have to be weighed against the fact that it gave much worse

predictions for the supernova data, greatly overshrinking the ŷi toward zero.
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Figure 13: Interpolation between pairs of points in supernova data. Left side is randomForest,

right side is gbm.
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results. Neural networks, which are essentially elaborate logistic regression programs, might

be expected to yield smoother output.

8 A comparison checklist

Prediction isn’t the same as estmation, though the two are often conflated. Much of this

paper has concerned the differences. As a summary of what has gone before as well as a

springboard for broader discussion, this section presents a checklist of important distinctions

and what they mean in terms of statistical practice.

The new millenium got off to a strong start on the virtues of prediction with Leo Brei-

man’s 2001 Statistical Science publication, “Statistical modeling: The two cultures.” An

energetic and passionate argument for the “algorithmic culture” — what I have been calling

the pure prediction algorithms — in this work Leo excoriated the “data modeling culture”

(i.e., traditional methods) as of limited utility in the dawning world of Big Data. Profes-

sor David Cox, the lead discussant, countered with a characteristically balanced defense of

mainstream statistics, not rejecting prediction algorithms but pointing out their limitations.

I was the second discussant, somewhat skeptical of Leo’s claims (which were effusive toward

random forests, at that time new) but also somewhat impressed.

Breiman turned out to be more prescient than me: pure prediction algorithms have seized

the statistical limelight in the Twenty-First Century, developing much along the lines Leo

suggested. The present paper can be thought of as a continued effort on my part to answer

the question of how prediction algorithms relate to traditional regression inference.

Table 5 displays a list of six criteria that distinguish traditional regression methods from

the pure prediction algorithms. My previous “broad brush” warning needs to be made again:

I am sure that exceptions can be found to all six distinctions, nor are the listed properties

written in stone, the only implication being that they reflect current usage.

Criterion 1. Surface plus noise models are ubiquitous in traditional regression methodology,

so much so that their absence is disconcerting in the pure prediction world. Neither surface

nor noise is required as input to randomForest, gbm, or their kin. This is an enormous

advantage for easy usage. Moreover, you can’t be using a wrong model if there is no model.
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Table 5: A comparison checklist of differences between traditional regression methods and pure

prediction algorithms. See commentary in the text.

Traditional regressions methods Pure prediction algorithms

(1) Surface plus noise models Direct prediction

(continuous, smooth) (possibly discrete, jagged)

(2) Scientific truth Empirical prediction accuracy

(long-term ) (possibly short-term)

(3) Parametric modeling Nonparametric

(causality ) (black box)

(4) Parsimonious modeling Anti-parsimony

(researchers choose covariates) (algorithm chooses predictors)

(5) x p× n: with p� n p� n, both possibly enormous

(homogenous data) (mixed data)

(6) Theory of optimal inference Training/test paradigm

(mle, Neyman–Pearson) (Common Task Framework)

A clinician dealing with possible prostate cancer cases will certainly be interested in

effective prediction, but the disease’s etiology will be of greater interest to an investigating

scientist, and that’s where traditional statistical methods come into their own. If random

forests had been around since 1908 and somebody just invented regression model significance

testing, the news media might now be heralding an era of “sharp data”.

Eliminating surface-building from inference has a raft of downstream consequences, as

discussed in what follows. One casualty is smoothness (Section 7). Applications of prediction

algorithms have focused, to sensational effect, on discrete target spaces — Amazon recom-
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mendations, translation programs, driving directions — where smoothness is irrelevant. The

natural desire to use them for scientific investigation may hasten development of smoother,

more physically plausible algorithms.

Criterion 2. The two sides of Table 5 use similar fitting criteria — some version of least

squares for quantitative responses — but they do so with different paradigms in mind. Fol-

lowing a two-hundred-year-old scientific path, traditional regression methods aim to extract

underlying truth from noisy data: perhaps not eternal truth but at least some takeaway

message transcending current experience.

Without the need to model surface or noise mechanisms, scientific truth fades in impor-

tance on the prediction side of the table. There may not be any underlying truth. Prediction

methods can be comfortable with ephemeral relationships that need only remain valid until

the next update. To quote Breiman, “The theory in this field shifts focus from data models

to the properties of algorithms,” that is, from the physical world to the computer. Research

in the prediction community, which is an enormous enterprise, is indeed heavily focused on

computational properties of algorithms — in particular, how they behave as n and p become

huge — and less on how they relate to models of data generation.

Criterion 3. Parametric modeling plays a central role in traditional methods of inference,

while the prediction algorithms are nonparametric, as in (6.4). (“Nonparametric”, however,

can involve hosts of tuning parameters, millions of them in the case of deep learning, all

relating to the algorithm rather than to data generation.) Lurking behind a parametric model

is usually some notion of causality. In the cholostyramine example of Figure 1, Section 2, we

are likely to believe that increased ingestion of the drug cholostyramine causes cholesterol

to decrease in a sigmoidal fashion, even if strict causality is elusive.20

Abandoning mathematical models comes close to abandoning the historic scientific goal

of understanding nature. Breiman states the case bluntly:

Data models are rarely used in this community [the algorithmic culture]. The

approach is that nature produces data in a black box whose insides are complex,

20Efron and Feldman (1991) struggled to make a causality argument, one not accepted uncritically by

subsequent authors.
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mysterious, and at least partly unknowable.21

The black-box approach has a scientifically anti-intellectual feeling but, on the other

hand, scientific understanding may be beside the point if prediction is the only goal. Machine

translation offers a useful case study, where there has been a several-decade conflict between

approaches based on linguistic analysis of language structure and more-or-less pure prediction

methods. Under the umbrella name of statistical machine translation (SMT), this latter

approach has swept the field, with Google Translate, for example, currently using a deep

learning prediction algorithm.

Traditional statistical education involves a heavy course of probability theory. Proba-

bility occupies a smaller portion of the nonparametric pure-prediction viewpoint, with pro-

babilistically simple techniques such as cross-validation and the bootstrap shouldering the

methodological burden. Mosteller and Tukey’s 1977 book, Data Analysis and Regression: A

Second Course in Statistics, favored a nonprobabilistic approach to inference that would be

congenial to a modern course in machine learning.

Criterion 4. The eleven neonate predictor variables in Table 1 were winnowed down from

an initial list of 81, following a familiar path of preliminary testing and discussions with the

medical scientists. Parsimonious modeling is a characteristic feature of traditional method-

ology. It can be crucial for estimation and, especially, for attribution, where it is usually

true that the power of discovery decreases as the list of predictors grows.

The pure prediction world is anti-parsimonious. Control of the predictor set, or the

“features” as they are called, passes from the statistician to the algorithm, which can coin

highly interactive new features such as random forests’ tree variables. “The more predictor

variables, the more information,” said Breiman, an especially accurate forecast of the deep

learning era.

I was doubtful. My commentary on Breiman’s paper began: “At first glance Leo Brei-

man’s stimulating paper looks like an argument against parsimony and scientific insight, and

in favor of black boxes with lots of knobs to twiddle. At second glance it still looks that

way, but the paper is stimulating . . . .” Well–impressive results like the randomForest and

21Cox counters: “Formal models are useful and often almost, if not quite, essential for incisive thinking.”
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gbm predictions for the prostate cancer data, Figure 5 and Figure 6 of Section 4, certainly

back up Leo’s claim. But it is still possible to have reservations. The coined features seem

here to be of the weak learner variety, perhaps inherently more ephemeral than the putative

strong learners of Table 1.

This is the suggestion made in Section 6. If the prediction algorithms work by clever

combinations of armies of weak learners, then they will be more useful for prediction than

estimation or, especially, for attribution (as suggested in Section 5). “Short-term science”

is an oxymoron. The use of prediction algorithms for scientific discovery will depend on

demonstrations of their longer-term validity.

Criterion 5. Traditional applications ask that the n × p data matrix x (n subjects, p

predictors) have n substantially greater than p, perhaps n > 5 · p, in what is now called “tall

data”. The neonate data with n = 812 and p = 12 (counting the intercept) is on firm ground;

less firm is the supernova data of Section 7, with n = 75 and p = 25. On the other side of

Table 5 the pure prediction algorithms allow, and even encourage, “wide data”, with p� n.

The prostate cancer microarray study is notably wide, with n = 102 and p = 6033. Even

if we begin with tall data, as with the cholostyramine example, the prediction algorithms

widen it by the coining of new features.

How do the prediction algorithms avoid overfitting in a p � n situation? There are

various answers, none of them completely convincing: first of all, using a test set guarantees

an honest assessment of error (but see the discussion of Criterion 6). Secondly, most of the

algorithms employ cross-validation checks during the training phase. Finally, there is an

active research area that purports to show a “self-regularizing” property of the algorithms

such that even running one of them long past the point where the training data is perfectly

fit, as in Figure 9 of Section 6, will still produce reasonable predictions.22

Estimation and, particularly, attribution work best with homogeneous data sets, where

the (x, y) pairs come from a narrowly defined population. A randomized clinical trial, where

the subjects are chosen from a specific disease category, exemplifies strict homogeneity. Not

22For instance, in an OLS fitting problem with p > n where the usual estimate β̂ = (xtx)−1xty is not

available, the algorithm should converge to the β̂ that fits the data perfectly, y = xβ̂, and has minimum

norm ‖β̂‖; see Hastie, Montanari, Rosset, and Tibshirani (2019).
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requiring homogeneity makes prediction algorithms more widely applicable, and is a virtue

in terms of generalizability of results, but a defect for interpretability.

The impressive scalability of pure prediction algorithms, which allows them to produce

results even for enormous values of n and p, is a dangerous virtue. It has led to a lust for ever

larger training sets. This has a good effect on prediction, making the task more interpolative

and less extrapolative (that is, more like Figure 5 and Figure 6, and less like Figure 8 and

Figure 9) but muddies attempts at attribution.23

Traditional regression methods take the matrix of predictions x as a fixed ancillary

statistic. This greatly simplifies the theory of parametric regression models; x is just as

random as y in the pure prediction world, the only probability model being the i.i.d. nature

of the pairs (x, y) ∼ F . Theory is more difficult in this world, encouraging the empirical

emphasis discussed in Criterion 6. Bayesian statistics is diminished in the a-probabilistic

prediction world, leaving a tacit frequentist basis as the theoretical underpinning.

Criterion 6. Traditional statistical practice is based on a century of theoretical development.

Maximum likelihood estimation and the Neyman–Pearson lemma are optimality criteria

that guide applied methodology. On the prediction side of Table 5, theoretical efficiency is

replaced by empirical methods, particularly training/test error estimates.

This has the virtue of dispensing with theoretical modeling, but the lack of a firm theo-

retical structure has led to “many flowers blooming”: the popular pure prediction algorithms

are completely different from each other. During the past quarter-century, first neural nets

then support vector machines, boosting, random forests, and a reprise of neural nets in their

deep learning form have all enjoyed the prediction spotlight. In the absence of theoretical

guidance we can probably expect more.

In place of theoretical criteria, various prediction competitions have been used to grade

23An experienced statistician will stop reading an article that begins, “Over one million people were

asked. . . ,” knowing that a random sample of 1,000 would be greatly preferable. This bit of statistical folk

wisdom is in danger of being lost in the Big Data era. In an otherwise informative popular book titled, of

course, Big Data, the authors lose all equilibrium on the question of sample size, advocating for n = all: all

the flu cases in the country, all the books on Amazon.com, all possible dog/cat pictures. “Reaching for a

random sample in the age of big data is like clutching at a horsewhip in the era of the motor car.” In fairness,

the book’s examples of n = all are actually narrowly defined, e.g., all the street manholes in Manhattan.

34



algorithms in the so-called “Common Task Framework”. The common tasks revolve around

some well known data sets, that of the Netflix movie recommendation data being best known.

None of this is a good substitute for a so-far nonexistent theory of optimal prediction.24

Test sets are an honest vehicle for estimating prediction error, but choosing the test set by

random selection from the full set d (2.1) may weaken the inference. Even modest amounts

of concept drift can considerably increase the actual prediction error, as in the prostate

data microarray example of Section 6. In some situations there are alternatives to random

selection, for example, by selecting training and test according to early and late collection

dates, as in Figure 8 and Figure 9. In the supernova data of Section 7, the goal is to apply

a prediction rule to supernovas much farther from Earth, so choosing the more distant cases

for the test set could be prudent.

In 1914 the noted astronomer Arthur Eddington,25 an excellent statistician, suggested

that mean absolute deviation rather than root mean square would be more efficient for es-

timating a standard error from normally distributed data. Fisher responded in 1920 by

showing that not only was root mean square better than mean absolute deviation, it was

better than any other possible estimator, this being an early example of his theory of suffi-

ciency.

Traditional methods are founded on these kinds of parametric insights. The two sides of

Table 5 are playing by different rules: the left side functions in a Switzerland of inference,

comparatively well ordered and mapped out, while Wild West exuberance thrives on the

right. Both sides have much to gain from commerce. Before the 1920s, statisticians didn’t

really understand estimation, and after Fisher’s work we did. We are in the same situation

now with the large-scale prediction algorithms: lots of good ideas and excitement, without

principled understanding, but progress may be in the air.

24Bayes rule offers such a theory, but at a cost in assumptions far outside the limits of the current prediction

environment.
25Later famous for his astronomical verification of Einstein’s theory of relativity.
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9 Traditional methods in the wide data era

The success of the pure prediction algorithms has had a stimulating effect on traditional

theory and practice. The theory, forged in the first half of the Twentieth Century, was tall-

data oriented: small values of n, but even smaller p, often just p = 1 or 2. Whether or not

one likes prediction algorithms, parts of modern science have moved into the wide-data era.

In response, traditional methods have been stretching to fit this new world. Three examples

follow.

Big data is not the sole possession of prediction algorithms. Computational genetics can

go very big, particularly in the form of a GWAS, genome-wide association study. An impres-

sive example is given by Ikram et al. (2010), in a study concerning the narrowing of blood

vessels in the eye.26 The amount of narrowing was measured for n = 15358 individuals; each

individual had their genome assessed for about p = 106 SNPs (single-nucleotide polymor-

phisms), a typical SNP having a certain choice of ATCG value that occurs in a majority

of the population or a minor, less prevalent alternative value. The goal was to find SNPs

associated with vascular narrowing.

With x = 15356× 106 we are definitely in big data and wide data territory. Surface plus

noise models seem out of the question here. Instead, each SNP was considered separately:

a linear regression was carried out, with the predictor variable the number of minor poly-

morphisms in the chromosome pair at that location — 0, 1, or 2 for each individual — and

response his or her narrowing measure. This gave a p-value pi against the null hypothesis:

polymorphism at location i has no effect on narrowing, i = 1, 2, . . . , 106. The Bonferroni

threshold for 0.05 significance is

pi ≤ 0.05/106. (9.1)

Ikram et al. displayed their results in a “manhattan plot” with zi = − log10(pi) graphed

against location on the genome. Threshold (9.1) corresponds to zi ≥ 7.3; 179 of the 106

SNPs had zi > 7.3, rejecting the null hypothesis of no effect. These were bunched into

five locations on the genome, one of which was borderline insignificant. The authors claimed

26Microvascular narrowing is thought to contribute to heart attacks, but it is difficult to observe in the

heart; observation is much easier in the eye.
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credit for discovering four novel loci. These might represent four genes implicated in vascular

narrowing (though a spike in chromosome 12 is shown to spread over a few adjacent genes).

Instead of performing a traditional attribution analysis with p = 106 predictors, the

GWAS procedure performed 106 analyses with p = 1 and then used a second layer of inference

to interpret the results of the first layer. My next example concerns a more elaborate

implementation of the two-layer strategy.

While not 106, the p = 6033 features of the prostate cancer microarray study in Section 4

are enough to discourage an overall surface plus noise model. Instead we begin with a

separate p = 1 analysis for each of the genes, as in the GWAS example. The data (4.1) for

the jth gene is

dj = {xij : i = 1, 2, . . . , 102}, (9.2)

with i = 1, 2, . . . , 50 for the normal controls and i = 51, 52, . . . , 102 for the cancer patients.

Under normality assumptions, we can compute statistics zj comparing patients with

controls which satisfy, to a good approximation,27

zj ∼ N (δj, 1), (9.3)

where δj is the effect size for gene j: δj equals 0 for “null genes”, genes that show the same

genetic activity in patients and controls, while |δj| is large for the kinds of genes being sought,

namely, those having much different responses for patients versus controls.

Inferences for the individual genes by themselves are immediate. For instance,

pj = 2Φ(−zj) (9.4)

is the two-sided p-value for testing δj = 0. However, this ignores having 6033 p-values to

interpret simultaneously. As with the GWAS, a second layer of inference is needed.

A Bayesian analysis would hypothesize a prior “density” g(δ) for the effect size, where g

includes an atom of probability π0 at δ = 0 to account for the null genes. Probably, most of

27If tj is the two-sample t-statistic comparing patients with controls, we take zj = Φ−1F100(tj), where

F100 is the cdf of a t-statistic with 100 degrees of freedom and Φ is the standard normal cdf. Effect size δj is

a monotone function of the difference in expectations between patients and controls; see Section 7.4 of Efron

(2010).
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the genes have nothing to do with prostate cancer so π0 is assumed to be near 1. The local

false discovery rate fdr(z) — that is, the probability of a gene being null given z-value z —

is, according to Bayes rule,

fdr(z) = π0φ(z − δ)/f(z)
.
= φ(z − δ)/f(z), (9.5)

where φ(z) = exp{−z2/2}/
√

2π, and f(z) is the marginal density of z,

f(z) =

∫ ∞
−∞

φ(z − δ)g(δ) dδ. (9.6)
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Figure 14: Estimated local false discovery curve f̂dr(z) and posterior effect size estimate Ê{δ | z}

from empirical Bayes analysis of prostate cancer data (the latter divided by 4 for display purposes).

Triangles indicate 29 genes having f̂dr(z) ≤ 0.20; circles are 29 most significant genes from glmnet

analysis.

The prior g(δ) is most often unknown. An empirical Bayes analysis supposes f(z) to be

in some parametric family fβ(z); the MLE β̂ is obtained by fitting fβ(·) to {z1, z2, . . . , zp},

the observed collection of all 6033 z-values, giving an estimated false discovery rate

f̂dr(z) = φ(z − δ)/fβ̂(z). (9.7)
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The dashed curve in Figure 14 shows f̂dr(z) based on a fifth-degree log-polynomial model

for fβ,

log {fβ(z)} = β0 +
5∑

k=1

βkz
k; (9.8)

f̂dr(z) is seen to be near 1.0 for |z| ≤ 2 (i.e., gene almost certainly null) and declines to

zero as |z| grows large, for instance equaling 0.129 at z = 4. The conventional threshold for

attributing significance is f̂dr(z) ≤ 0.20; 29 genes achieved this, as indicated by the triangles

in Figure 14.

We can also estimate the expected effect size. Tweedie’s formula (Efron, 2011) gives a

simple expression for the posterior expectation,

E{δ | z} = z +
d

dz
log f(z), (9.9)

f(z) the marginal density (9.6). Substituting fβ̂ for f gave the estimate E{δ | z} in Figure 14.

It is nearly zero for |z| ≤ 2, rising to 2.30 at z = 4.

By using a two-level hierarchical model, the empirical Bayes analysis reduces the situation

from p = 6033 to p = 5. We are back in the comfort zone for traditional methods, where

parametric modeling for estimation and attribution works well. Both are illustrated in

Figure 14.

Sparsity offers another approach to wide-data estimation and attribution: we assume

that most of the p predictor variables have no effect and concentrate effort on finding the

few important ones. The lasso (Tibshirani, 1996) provides a key methodology. In an OLS

type problem we estimate β, the p-vector of regression coefficients, by minimizing

1

n

n∑
i=1

(yi − xtiβ)2 + λ‖β‖1, (9.10)

where ‖β‖1 =
∑p

j=1 |βj|.

Here λ is a fixed tuning parameter: λ = 0 corresponds to the ordinary least squares

solution for β (if p ≤ n) while λ =∞ makes β̂ = 0. For large values of λ, only a few of the

coordinates β̂j will be nonzero. The algorithm begins at λ =∞ and decreases λ, admitting

one new nonzero coordinate β̂j at a time. This works even if p > n.

The lasso was applied to the supernova data of Section 7, where x has n = 75 and

p = 25. Figure 15 shows the first six steps, tracking the nonzero coefficients β̂j as new
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Figure 15: First 6 steps of lasso algorithm applied to supernova data; coefficients of various

predictors are plotted as a function of step size. Predictor 15 was chosen first, followed by 16, 18,

22, 8, and 6. Stopping at step 4 gives the lowest Cp estimate of estimation error.

variables were added. Predictor 15 was selected first, then 16, 18, 22, 8, and 6, going on to

the full OLS solution β̂ at step 25. An accuracy formula suggested step 4, with the only

nonzero coefficients 15, 16, 18, and 22, as giving the best fit. (These correspond to energy

measurements in the iron portion of the spectrum.)

Sparsity and the lasso take us in a direction opposite to the pure prediction algorithms.

Rather than combining a myriad of weak predictors, inference is based on a few of the

strongest explanatory variables. This is well suited to attribution but less so for prediction.

An R program for the lasso, glmnet, was applied to the prostate cancer prediction prob-

lem of Section 4, using the same training/test split as that for Figure 5. It performed much

worse than randomForest, making 13 errors on the test set. Applied to the entire data

set of 102 men, however, glmnet gave useful indications of important genes: the circles in

Figure 14 show z-values for the 29 genes it ranked as most influential. These have large

values of |zi|, even though the algorithm didn’t “know” ahead of time to take t-statistics

between the cancer and control groups.

The lasso produced biased estimates of β, with the coordinate values β̂j shrunk toward

40



zero. The criticism leveled at prediction methods also applies here: biased estimation is not

yet on a firm theoretical footing.

10 Two hopeful trends

This wasn’t meant to be an “emperor has no clothes” kind of story, rather “the emperor

has nice clothes but they’re not suitable for every occasion”. Where they are suitable, the

pure prediction algorithms can be stunningly successful. When one reads an enthusiastic

AI-related story in the press, there’s usually one of these algorithms, operating in enormous

scale, doing the heavy lifting. Regression methods have come a long and big way since the

time of Gauss.

Much of this article has been concerned with what the prediction algorithms can’t do,

at least not in their present formulations. Their complex “black box” nature makes the

algorithms difficult to critique. Here I’ve tried to use relatively small data sets (by prediction

literature standards) to illustrate their differences from traditional methods of estimation

and attribution. The criticisms, most of which will not come as a surprise to the prediction

community, were summarized in the six criteria of Table 5 in Section 8.

Some time around the year 2000 a split opened up in the world of statistics.28 For

the discussion here we can call the two branches “pure prediction” and “GWAS”: both

accommodating huge data sets, but with the former having become fully algorithmic while

the latter stayed on a more traditional math-modeling path. The “two hopeful trends” in

the title of this section refer to attempts at reunification, admittedly not yet very far along.

Trend 1 aims to make the output of a prediction algorithm more interpretable, that is,

more like the output of traditional statistical methods. Interpretable surfaces, particularly

those of linear models, serve as the ideal for this achievement. Something like attribution is

also desired, though usually not in the specific sense of statistical significance.

One tactic is to use traditional methods for the analysis of a prediction algorithm’s output;

see Hara and Hayashi (2016) and page 346 of Efron and Hastie (2016). Wager, Hastie,

and Efron (2014) use bootstrap and jackknife ideas to develop standard error calculations

28See the triangle diagram in the epilogue of Efron and Hastie (2016).
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for random forest predictions. Murdoch et al. (2019) and Vellido, Mart́ın-Guerrero, and

Lisboa (2012) provide overviews of interpretability, though neither focuses on pure prediction

algorithms. Using information theoretic ideas, Achille and Soatto (2018) discuss statistical

sufficiency measures for prediction algorithms.

Going in the other direction, Trend 2 moves from left to right in Table 5, hoping to achieve

at least some of the advantages of prediction algorithms within a traditional framework. An

obvious target is scalability. Qian et al. (2019) provide a glmnet example with n = 500, 000

and p = 800, 000. Hastie et al. (2009) successfully connected boosting to logistic regression.

The traditional parametric model that has most currency in the prediction world is logistic

regression, so it is reasonable to hope for reunification progress in that area.

“Aspirational” might be a more accurate word than “hopeful” for this section’s title. The

gulf seen in Table 5 is wide and the reunification project, if going at all, is just underway.

In my opinion, the impediments are theoretical ones. Maximum likelihood theory provides

a lower bound on the accuracy of an estimate, and a practical way of nearly achieving it.

What can we say about prediction? The Common Task Framework often shows just small

differences in error rates among the contestants, but with no way of knowing whether some

other algorithm might do much better. In short, we don’t have an optimality theory for

prediction.

The talks I hear these days, both in statistics and biostatistics, bristle with energy and

interest in prediction algorithms. Much of the current algorithmic development has come

from outside the statistics discipline but I believe that future progress, especially in scientific

applicability, will depend heavily on us.

A Appendix

A.1 Out-of-bag (oob) estimates, Section 3

A random forest application involves B nonparametric bootstrap samples from the original

data set d (2.1), say d∗1,d∗2, . . . ,d∗B. Let

ŷik = f(xi,d
∗k), i = 1, 2, . . . , n and k = 1, 2, . . . , B, (A.1)
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be the estimate for the ith case obtained from the prediction rule based on the kth bootstrap

sample. Also let

Nik = number of times case (xi, yi) appears in d∗k. (A.2)

The oob estimate of prediction errors is

Êrr0 =
B∑
k=1

∑
i:Nik=0

L(yi, ŷik)

/
B∑
k=1

∑
i:Nik=0

1, (A.3)

where L(yi, ŷik) is the loss function; that is, Êrr0 is the average loss over all cases in all

bootstrap samples where the sample did not include the case.

“Bagging” stands for “bootstrap aggregation”, the averaging of the true predictors em-

ployed in random forests. The intuition behind (A.3) is that cases having Nik = 0 are “out

of the bag” of d∗k, and so form a natural cross-validation set for error estimation.

A.2 Prediction is easier than attribution

We wish to motivate (5.6)–(5.7), beginning with model (5.4)–(5.5). Let x̄0j be the average

of the n/2 healthy control measurements for gene j, and likewise x̄1j for the n/2 sick patient

measurements. Then we can compute z values

zj = c(x̄1j − x̄0j)
ind∼ N (δj, 1) (A.4)

for j = 1, 2, . . . , N . Letting π0 = N0/N and π1 = N1/N be the proportions of null and

non-null genes, (5.5) says that the zj take on two possible densities, in proportions π0 and

π1,

π0 : z ∼ f0(z) or π1 : z ∼ f1(z), (A.5)

where f0(z) is the standard normal density f(z), and f1(z) = φ(z −∆). With both N0 and

N1 going to infinity, we can and will think of π0 and π1 as prior probabilities for null and

non-null genes.

The posterior moments of δj given zj, obtained by applying Bayes rule to model (A.4),

have simple expressions in terms of the log derivatives of the marginal density

f(z) = π0f0(z) + π1f1(z), (A.6)
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d(z) ≡ E{δ | z} = z +
d

dz
log f(z),

and

v(z) ≡ var{δ | z} = 1 +
d2

dz2
log f(z).

(A.7)

See Efron (2011). That is,

δj | zj ∼ (dj, vj), (A.8)

where the parenthetical notation indicates the mean and variance of a random quantity and

dj = d(zj), vj = v(zj). Then Xj ∼ N (δj/2c, 1) for the sick subjects in (5.4) gives

Xj | zj
ind∼
(
dj
2c
,
vj
4c2

+ 1

)
. (A.9)

(The calculations which follow continue to focus on the “plus” case of (5.4).)

A linear combination

S =
N∑
j=1

wjXj (A.10)

has posterior mean and variance

S ∼

(
N∑
j=1

w0A0,
N∑
j=1

w2
jBj

)
,

with Aj =
dj
2c

and Bj =
vj
4c2

+ 1.

(A.11)

For the “minus” arm of (5.4) (the healthy controls), S ∼ (−
∑N

1 wjAj,
∑N

1 B
2
j ). We can use

S as a prediction statistic, predicting sick for S > 0 and healthy for S < 0.

The probability of a correct prediction depends on

R2 = mean(S)2/ var(S) =

(
N∑
1

wjAj

)2/(
N∑
1

w2
jBj

)
. (A.12)

This is maximized for wj = Aj/Bj (as with Fisher’s linear discriminant function), yielding

S ∼

(
N∑
1

A2
j/Bj,

N∑
1

A2
j/Bj

)
and R2 =

N∑
1

A2
j/Bj. (A.13)

A normal approximation for the distribution of S gives

Φ(−R) (A.14)

as the approximate probability of a prediction error of either kind; see Efron (2009).

It remains to calculate R2.
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Lemma 1. A continuous approximation to the sum R2 =
∑N

1 A
2
j/Bj is

R2 =
N2

1

N0

∫ ∞
−∞

∆2

4c2
N0/N1

1 + N0

N1

f0(z)
f1(z)

1

1 + v(z)
4c2

f1(z) dz. (A.15)

Before verifying the lemma, we note that it implies (5.6): letting N0 → ∞ with N1 =

O(N0), and using (A.4), gives

R2 =
N2

1

N0

∫ ∞
−∞

∆2

4c2
exp{−(z2/2) + 2∆z − (∆2/2)}√

2π (1 + v(z)/4c2)
dz. (A.16)

The variance v(z) is a bounded quantity under (A.4) — it equals 0.25 for ∆ = 1, for

instance — so the integral is a finite positive number, say I(∆). If N1 = γN
1/2
0 , then the

prediction error probabilities are approximately Φ(−γI(∆)1/2) according to (A.14). However,

N1 = o(N
1/2
0 ) gives R2 → 0 and error probabilities → 1/2.

It remains to verify the lemma. Since any δj equals either 0 or ∆ (5.5),

d(z) = E{δ | z} = Pr{δ 6= 0 | z}∆

= tdr(z)∆,
(A.17)

where tdr(z) is the true discovery rate Pr{δ 6= 0 | z},

tdr(z) =
π1f1(z)

π0f0(z) + π1f1(z)
=

1

1 + π0
π1

f0(z)
f1(z)

=
1

1 + N0

N1

f0(z)
f1(z)

.

(A.18)

From (A.11) and (A.13) we get

R2 =
N∑
1

A2
j

Bj

=
N∑
1

d2j
4c2 + vj

=
N∑
1

tdr2j
4c2 + vj

= N

∫ ∞
−∞

tdr(z)2∆2

4c2 + v(z)
f(z) dz,

(A.19)

the last equality being the asymptotic limit of the discrete sum.

Since tdr(z)f(z) = π1f1(z) = (N1/N0)f1(z), (A.18) becomes

R2 = N1

∫ ∞
−∞

tdr(z)∆2

4c2 + v(z)
f1(z) dz. (A.20)

Then (A.17) gives the lemma. Moreover, unless N1 = O(N0), (A.17) shows that tdr(z)→ 0

for all z, supporting (5.7).
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