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“Strange, as one gets older you’re expected to know more about the future.”

The history of statistics as a recognized discipline divides rather neatly at 1900, the year of
Karl Pearson’s chi-square paper. Before then we are still close to the world of Quetelet, where
huge census-level data sets are brought to bear on simple but important questions: Are there more
male or female births? Is the murder rate rising? Then, as if on cue, the Twentieth Century rings
in a focus on small-scale statistics. A team of intellectural giants, Fisher, Neyman, Hotelling, . . . ,
invent a theory of optimal inference, capable of wringing out every drop of collected information.
The questions are still simple: Is treatment A better than treatment B? But the new methods are
suited to the kinds of small data sets an individual scientist might collect.

What does this have to do with the future of statistics? Quite a bit, perhaps: the Twenty-First
Century, again on cue, seems to have initiated a third statistical era. New technologies, exemplified
by the microarray, permit scientists to collect their own huge data sets. But this is not a return
to the age of Quetelet. The flood of data is now accompanied by a flood of questions, perhaps
thousands of them, that the statistician is charged with answering together; not at all the setting
Fisher et al. had in mind.

As a cruder summary of my already crude statistical history, we have

19th Century: Large data sets, simple questions
20th Century: Small data sets, simple questions
21st Century: Large data sets, complex questions

The future of statistics, or at least the next large chunk of future, will be preoccupied, I believe, with
problems of large-scale inference raised in our revolutionary scientific environment. For example,
how should one analyze 10, 000 related hypothesis tests or 100, 000 correlated estimates at the same
time?

Figure 1 concerns an example of large-scale inference from Singh et al. (2002): 52 prostate
cancer patients and 50 normal controls have each had his genetic expression levels measured on
N = 6033 genes. This produces a matrix of measurements X with N = 6033 rows, one for each
gene, and 102 columns, one for each man: enormous by Twentieth Century standards but nothing
remarkable these days. We wonder which of the genes, if any, are more active in the cancer patients.

As a first step we can compute a two-sample t-statistic ti comparing expression levels between
cancer patients and controls on gene i. For Figure 1, each ti has been transformed into a z-value
zi, by definition a test statistic having a standard normal distribution under the null hypothesis
that gene i behaves the same in both groups,

H0 : zi ∼ N (0, 1). (1)
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The histogram of the 6033 zi’s looks like a N (0, 1) curve near its center, which makes sense since
presumably most of the genes are not involved in prostate cancer etiology, but it also shows a
promising excess of values in the extreme tails. For example, 49 of the zi’s exceed 3 (indicated by
the hash marks) whereas the expected number is only 8.14 if all the genes follow (1). Should we
report the list of 49 back to the researchers as interesting candidates for further study?Figure 1. N=6033 z−values, prostate study

F
re

qu
en

cy

−4 −2 0 2 4

0
50

10
0

15
0

20
0

N(0,1)

49 z−values
exceed 3

Figure 1: N = 6033 z-values, prostate study

Any one of the genes is wildly significant by classical single-test standards where we would reject
H0 for zi > 1.96, the two-sided .05 value. But with N = 6033, the .05 Bonferroni bound requires
zi > 4.46, the two-sided .05/N value, and only 3 of the 49 genes make the cut.

In what might be taken as a premonitory salvo of Twenty-First Century statistics, Benjamini
and Hochberg (1995) proposed a different, more lenient standard for large-scale testing based on
False Discovery Rates:

Fdr(3) = 8.14/49 = .166 (2)

in our case, the ratio of counts expected under null conditions to those actually observed in the
interval (3,∞). Assuming independence of the z-values, they showed that a statistician who chooses
to reject all zi’s in the largest interval (x,∞) such that Fdr(x) is less than some control level q
will make an expected proportion of false discoveries no greater than q. Taking q = .166 for the
prostate data gives x = 3 and suggests that 1/6 of the list of 49 are false discoveries, the other 5/6
being genuinely non-null genes: not bad odds for the prospects of further investigation.

Controlling Fdr is fundamentally different than controlling the probability of Type I error. Now
the significance of a gene that has zi > 3 depends on how many others exceed 3. If there were
only 10 such, instead of 49, we would have Fdr(3) = .81; not an encouraging prospect for the
investigators.

Twentieth Century applied statistics has been very much a world of direct evidence in which
each case, each gene in our example, is judged entirely on its own data. This is a world designed for
frequentism, where objectivity is enforced by notions of unbiasedness, minimum variance, size and
power. But large-scale data sets like that for the prostate study abound with indirect evidence: our
interest in zi is affected by all the other zj ’s. I believe that the immediate future of statistical theory
and practice crucially involves “learning from the experience of others”, i.e., the incorporation of
indirect evidence.
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Bayes theorem is a perfect recipe for learning from the experience of others, and we can expect
Bayesian methods to play a greater role in Twenty-First Century data analysis. Fdr theory was
derived frequentistically, but it has a compelling Bayesian rationale. Assuming that the prior
probability of a null case is near 1, Bayes theorem yields

Pr{gene i is null|zi ≥ x}
.= F0(x)/F (x) (3)

where F0 is the probability that a null zi exceeds x [equaling 1 − Φ(x) under (1)] and F (x) is
the probability that a randomly selected zi, null or not, exceeds x. Substituting the empirical cdf
F̂ (x) for the unknown F (x) gets us back to definition (2); see Efron (2008). We can restate the
Benjamini–Hochberg procedure in Bayesian terms: “Reject those zi’s in the largest interval (x,∞)
that has estimated Bayes null probability (3) less than q.”

Indirect evidence is not the sole property of Bayesians. Tukey’s phrase “borrowing strength”
nicely captures the frequentist regression tactic of using nearby data points to assist in estimation
at a particular point of interest. “Nearby” refers to distance in a space of relevant covariates. The
explosion in data collection has brought with it an explosion in the number of covariates, often
too many for standard regression techniques. A thriving industry of new methods has emerged
— boosting, bagging, CART, Lasso, LARS, projection pursuit — which search to build effective
regression models from subsets of the available regressors. The generic term here is data mining,
which began as an insult but now seems to have its own robust statistical future.

Bayesian and frequentist ideas are combined happily in the Fdr algorithm. Other lines are
blurred too: in (2) we are estimating the hypothesis testing quantity (3); that is, we are carrying
out an “empirical Bayes” analysis, to use Robbins’ apt description. Blurred lines are another likely
(and hopeful) trend, as Twenty-First Century statisticians outgrow the confines of classical theory.

In moving beyond the classical confines we are also moving outside its wall of protection. Fisher,
Neyman et al. fashioned, with enormous intellectual effort, an almost perfect inferential machine for
small-scale estimation and testing problems. It took our brilliant predecessors at least 25 years to
work the kinks out of ANOVA/linear model theory. My guess is for another long period of progress
and retrenchment. Difficulties with large-scale inference are easy to find. Not all microarray
data sets are as obliging as that from the prostate study. Often the histogram is much wider or
narrower than in Figure 1, casting grave doubt on the adequacy of the textbook null hypothesis (1).
Correlations sprawl across the z-values, undermining accuracy of the empirical Bayes estimator.
Effect sizes for the genes deemed “non-null” are difficult to assess because of massive selection
biases from choosing among so many candidates. Et cetera, et cetera. In other words, there is a
lot for statisticians to think about over the next 25 years.

Some of that thinking will involve the legitimate use of Bayesian methods in large-scale inference.
As an example, Figure 2 concerns effect size estimation in the prostate study. Suppose that the
z-value for gene i follows a normal distribution,

zi ∼ N (µi, 1), (4)

µi the “effect size” (so µi = 0 for the null genes (1)), where the effect sizes are drawn from some
unknown Bayesian prior distribution G(µ). Call f(z) the marginal density of z-values induced by
G(µ) and (4). Then it is not difficult to show that expected effect size µ(z) is a simple function of
f(z),

µ(z) = z +
d

dz
log f(z). (5)

The heavy curve in Figure 2 is an empirical Bayes estimate of (5): a smooth curve f̂(z) was fit
to the heights of the histogram bars in Figure 1 and its logarithm differentiated to give µ̂(z); see
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Efron (2009). Gene 610 has z610 = 5.29, the largest of the 6033 z-values, with effect size estimate
µ̂610 = 4.11, as indicated.
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fig2. Effect size estimates for prostate study
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Figure 2: Effect size estimates for prostate study

We can be almost certain that z610, as the maximum of N = 6033 observations, exaggerates
µ610. This is the curse of selection bias. Bayes estimates, according to theory, are immune to
selection bias: if µ̂610 were a genuine Bayes posterior estimate of µ610, we would not have to
concern ourselves that gene 610 was selected on the basis of the data. A Bayes prior effectively
postulates an infinite amount of relevant past experience, swamping selection effects from mere
thousands of observations.

Are empirical Bayes estimates immune to selection bias? N = 6033 is not N = infinity, and
we might suspect at least some selection effects to linger in µ̂610. Other very appealing Bayesian
properties, like the right to take interim looks at a clinical trial without an optional stopping penalty,
are not put to the test in small-scale situations. Large-scale studies offer their own self-contained
universes in which it may be possible to settle such questions.

Statistics is a second-level science: our “nature” is the data-analytic questions posed by front-
line scientists — biologists, astronomers, economists, etc. — the “etc.” by now spanning almost all
areas of quantitative inquiry. The future of statistics depends on the future of science, in particular
of scientific technology. There’s a good chance that today’s huge data sets will seem puny in a few
years, in which case this little essay will look remarkably timid.

The future I’ve been discussing is that of statistics as an intellectual discipline. What about
the future of the statistics profession? There is no question that the probabilistic/statistical point
of view continues its relentless spread across science and engineering. (Maybe scientists are just
running out of problems simple enough to solve deterministically.) So there will be more people
interested in statistical questions, but that doesn’t necessarily imply more statisticians. The field
could fractionate into subject area subspecialties.

I don’t think so. The health of a scientific profession can be rated on three criteria:

• An outside demand for answers in the profession’s chosen area.

• Some evidence of past success in asnwering such questions.

• An ongoing production of useful new ideas.
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In other words, the profession should be healthy from both an inside and outside point of view.
I give statistics high grades on all three criteria, perhaps higher than at any time in the past
half-century. In one sense we have a monopoly: statistics is the only profession that takes applied
inference seriously as a subject of study. So in my view, our future work is cut out for us, but it’s
not cut out for anyone else.
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