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A Diagnostic Function for the Accuracy of
Bootstrap Confidence Intervals
Bradley Efron

Abstract. The standard intervals, a point estimate plus or minus some mul-
tiple of standard error, are mainstays of statistical practice. They are easy
to calculate in most situations, while providing first-order asymptotic accu-
racy, but can be quite inaccurate in realistic applications. The bca system of
bootstrap confidence intervals offers second-order accuracy, often a substan-
tial improvement. These intervals are based on an implied transformation to
a normal translation family. Is this justified? This paper implements a diag-
nostic function to answer the question. In any one application it produces a
data-based estimate of accuracy for the bca intervals. The method applies to
both parametric and nonparametric situations, and is particularly easy to use
in the latter, requiring no special programming from the user.

Key words and phrases: equivalence, transformations to normality, correct-
ness, nonparametric.

1. INTRODUCTION

Exact confidence intervals are an unattainable luxury in
usual practice. Most often, statisticians use the standard
intervals as an approximation,

(1.1) θ̂± z(α)σ̂,

where θ̂ is an unbiased or nearly unbiased point estimate
for a target parameter θ, σ̂ is an estimate of its standard
error, and z(α) is the α percentile point of the standard
normal distribution, cdf Φ,

(1.2) z(α) =Φ−1(α);

the familiar choice α= 0.975, z(α) = 1.96, gives approx-
imate 95% two-sided coverage, with 2.5% noncoverage
on each side of (1.1).

The standard intervals enjoy two favorable properties
that make them immensely popular:

1. They are asymptotically accurate, with actual cov-
erage approaching the nominal level with errors of
order O(n−1/2) in sample size n (so-called “first
order accuracy”).

2. They are automatic in the sense of not requiring
special theoretical calculations for each new appli-
cation. This is especially true now that methods like
the bootstrap painlessly provide estimates of the
standard error σ̂ in (1.1).
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The trouble with the standard intervals is that they can
be quite inaccurate, as the examples that follow will show.
The bca bootstrap confidence intervals, described in Sec-
tion 2, are computer-intensive extensions of (1.1) that im-
prove accuracy to second order, that is, to coverage errors
of orderO(n−1) rather thanO(n−1/2), often a substantial
practical improvement as well as a theoretical one.

The algorithm for the bca confidence limits is more
complicated than (1.1), and involves Monte Carlo estima-
tion of some adjustable constants. A reasonable concern
is for the validity of the bca formula in one’s own appli-
cation. The diagnostic function of my title is an algorithm
for checking the assumptions underlying the bca proce-
dure.

Table 1 presents a small data set I will use for illus-
tration: n = 22 students have each taken five tests with
scores as shown (extracted from a larger set of 88 stu-
dents in Mardia, Kent and Bibby, 1979). As a first exam-
ple, suppose we are interested in the parameter

(1.3) θ = correlation (mechanics score, vectors score).

Pearson’s sample correlation coefficient θ̂ is the MLE of
θ,

(1.4) θ̂ = 0.498,

assuming bivariate normality of the (mechanics, vectors)
pairs, and independence across students. The time-tested
standard error estimate for θ̂ is

(1.5) σ̂ =
1− θ̂2

(n− 3)1/2
= 0.173,
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TABLE 1
Scores received by 22 students who have each taken tests in

mechanics, vectors, algebra, analysis, and statistics. From Mardia,
Kent and Bibby (1979).

Mech Vecs Alg Analy Stat

1 7 51 43 17 22
2 44 69 53 53 53
3 49 41 61 49 64
4 59 70 68 62 56
5 34 42 50 47 29
6 46 40 47 29 17
7 0 40 21 9 14
8 32 45 49 57 64
9 49 57 47 39 26

10 52 64 60 63 54
11 44 61 52 62 46
12 36 59 51 45 51
13 42 60 54 49 33
14 5 30 44 36 18
15 22 58 53 56 41
16 18 51 40 56 30
17 41 63 49 46 34
18 48 38 41 44 33
19 31 42 48 54 68
20 42 69 61 55 45
21 46 49 53 59 37
22 63 63 65 70 63
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FIG 1. Exact 95% interval for student score correlation is
(0.093,0.751); densities fθ(θ̂) for θ = 0.093,0.498,0.751.

yielding the 95% standard interval (1.1),

(1.6) θ ∈ [0.160,0.836].

This turns out to be quite wrong. The exact 95% interval
is

(1.7) θ ∈ [0.093,0.751].

Figure 1 shows the “Neyman construction” of the exact
interval: the choice θ = 0.093 gives θ̂ probability 0.025
of exceeding the observed value 0.498, while θ = 0.751
gives probability 0.025 of θ̂ being less than 0.498. The

three curves show the density function fθ(θ̂) for θ =
0.093,0.498, and 0.751.

The standard interval (1.1) takes literally the asymptotic
normal model

(1.8) θ̂ ∼N (θ,σ2),

a normal translation family (ntf). The actual family of
densities fθ(θ̂) for the normal theory estimates θ̂, given
true correlation θ, is emphatically not ntf, as Figure 1
shows, foretelling the poor performance of (1.1).
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FIG 2. The three density curves from Figure 1 now transformed to
Fisher’s ϕ scale.

Fisher suggested a transformation of variables to put
the correlation coefficient family fθ(θ̂) into ntf form:

(1.9) ϕ=
1

2
log

(
1 + θ

1− θ

)
and ϕ̂=

1

2
log

(
1 + θ̂

1− θ̂

)
.

Figure 2 shows the three densities from Figure 1, now for
the transformed family fϕ̂(ϕ̂). To the eye at least, the ntf

ideal ϕ̂ ∼ N (ϕ,σ2) seems to have been achieved (with
σ = (n− 3)−1/2 = 0.229). The standard interval on the ϕ
scale, now fully justified,1 is

(1.10) ϕ̂± 1.96σ.

The inverse mapping of ϕ to θ applied to (1.10) gives a
quite accurate 95% interval for θ, as shown in Table 2.

Fisher’s method is brilliantly ingenious, and suited to
the computational limitations of 1915, but it has two
points against it:

• It requires Fisher. Given a new situation, the
statistician needs to figure out what mapping, if any,
would play the role of (1.9) in transforming fθ(θ̂)
to a normal translation family–which is to say that
the transformation method is not automatic.

1In fact, f
ϕ̂
(ϕ̂) is not exactly N (ϕ,σ2), as we’ll see.
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TABLE 2
Approximate and exact 95% confidence limits for student score

correlation coefficient (1.3); bca is bootstrap interval described in
Section 2, which in this case can be calculated directly, without

simulation.

.025 .975

Standard .160 .836
Fisher .097 .760
Exact .093 .751
bca .083 .754

TABLE 3
Standard and bca approximate 95% confidence limits for student

score maximum eigenvalue (1.12).

.025 .975

Standard 288 1078
bca 424 1426

• It can’t deal with nuisance parameters. There are
none in the bivariate normal correlation coefficient
problem, but that is unusual even in small-sample
situations.

The standard method (1.1) overcomes both of these
limitations, at the expense of possibly serious inaccura-
cies. The bottom line in Table 2, “bca”, refers to the boot-
strap confidence interval algorithm described in Section 2.
It also has an automatic character, with a single algorithm
applying to a wide range of situations, including those
with nuisance parameters (as well as to nonparametric set-
tings; see Section 5), and with higher accuracy than the
standard method, already evident in Table 2.

The example in Table 3 better illustrates the practical
difficulties of setting confidence intervals. We assume,
as in Mardia, Kent and Bibby (1979), that the rows of
the student score data matrix in Table 1 are independent
draws from a five-dimensional normal distribution,

(1.11) xi
ind∼ N5(γ,Σ), i= 1, . . . ,22,

(γ a 5-vector and Σ a 5 × 5 matrix, both unknown) and
that the parameter of interest θ is the maximum eigen-
value “maxeig” of Σ,

(1.12) θ =maxeig(Σ).

The maximum likelihood estimate θ̂ is

(1.13) θ̂ =maxeig
(
Σ̂
)
= 683,

where Σ̂ is the MLE of Σ (21/22 times the usual unbiased
estimate). We want confidence limits for θ.

Table 3 shows the lower and upper limits for the stan-
dard and bca approximate 95% confidence intervals for θ.
The bca interval is much shorter to the left of θ̂ = 683,
and much longer to the right. Can we believe it? In this

case there is no gold standard exact interval for compari-
son. This is where the diagnostic function comes in. I will
show (in Section 5) that in this situation the assumptions
underlying the bca interval are well-supported by the data.

The paper proceeds as follows:

• Section 2 reviews the bca system of bootstrap con-
fidence intervals and the distributional assumptions
(“NSTF”) that support it.

• A diagnostic function is introduced in Section 3 that
is linear in NSTF families but nonlinear in a wider
class (“GSTF”) of distributional families.

• A GSTF version of the bca intervals (“gbca”) is de-
veloped in Section 4, leading to equivalence tables
that show the accuracy of the bca intervals if gbca
is actually the appropriate choice.

• Section 5 extends the previous results to multi-
parameter families, including nuisance parameters,
and develops a computational procedure for carry-
ing out the diagnostic/equivalence calculations.

• A collection of remarks and details is presented in
Section 6, which ends with a brief discussion.

2. THE BCA SYSTEM OF BOOTSTRAP CONFIDENCE
INTERVALS

The standard intervals (1.1) have as their target class
the normal translation families (ntf), θ̂ ∼N (θ,σ2). If the
distribution of θ̂ given θ is an ntf then θ̂± z(α)σ is a per-
fectly accurate confidence interval. One way to say what
goes wrong in our previous example is that ntf is a small
and specialized target class, and one that’s easy to miss.

The bca system of confidence intervals aims at a big-
ger target class: normal scaled transformation families, or
NSTF (Efron, 1982). A family of distributions of θ̂ given
θ is NSTF if there exists a monotone transformation m(·)
such that

(2.1) ϕ=m(θ) and ϕ̂=m
(
θ̂
)

satisfy

(2.2) ϕ̂= ϕ+ (1+ a0ϕ)(Z − z0),

with Z ∼N (0,1). Here z0 is the “bias corrector” and a0
the “acceleration”, as discussed next. Fisher’s intervals for
the correlation coefficient assumed that θ̂ given θ was an
NSTF, with transformationm(·) as in (1.9), and z0 and a0
both zero. Section 3 will show that to be nearly, but not
exactly, correct.

The NSTF class expands on the normal translation
model θ̂ ∼N (θ,σ2) in three ways:

1. By allowing for a monotone transformation m(·) to
a normal scale (2.2).

2. By allowing for a bias correction z0 on the normal-
ized scale.
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3. By allowing for non-constant standard deviation on
the normalized scale, as measured by the accelera-
tion a0.

All three corrections to the ntf model are necessary for
second order accuracy; see Hall (1988) and Section 8 of
DiCiccio and Efron (1996).

Accuracy — the agreement of nominal and actual cov-
erage rates — is by itself not a sufficient performance
criterion. Fisher argued that his transformation argument
produced correct as well as accurate intervals for the
correlation problem: given ϕ̂ ∼ N (ϕ,σ2), the interval
ϕ̂±1.96σ uses all the available information, in a frequen-
tistically obvious way. If I randomly chose 11 of the 22
students in Table 1 and used their data to form an exact
interval for θ, it would be perfectly accurate but incorrect.
Correctness is one of those Fisherian ideas that’s hard to
pin down but important to consider.

Let Fθ(θ̂) be the cdf of observation θ̂ given parameter
value θ. The bca confidence limits depend on the follow-
ing theorem from Efron (1987):

THEOREM 1. If the family of cdfs Fθ(θ̂) is an NSTF
then the exact and correct one-sided level α upper confi-
dence limit θbca[α] for θ is

(2.3) θ̂bca[α] = F−1

θ̂

{
Φ

(
z0 +

z0 + z(α)

1− a0(z0 + z(α))

)}
,

with Φ the standard normal cdf and z(α) = Φ−1(α) as
before. The two-sided level 2α−1 bca confidence interval
is

(2.4) θ ∈
(
θ̂bca[1− α], θ̂bca[α]

)
,

and this will give exactly the claimed coverage probabili-
ties in an NSTF.

Notice that the monotone function m(θ) in (2.1)–(2.2)
is not required to calculate (2.3); only its existence is
needed.

Theorem 1 can be re-expressed in bootstrap terms. Let

(2.5) β(α) = Φ

(
z0 +

z0 + z(α)

1− a0(z0 + z(α))

)
,

so θ̂bca[α] = F−1

θ̂
(β(α)). But Fθ̂ is the cdf of the boot-

strap distribution of observations θ̂∗, given parameter
value θ = θ̂. (The star notation is needed to differentiate
θ̂∗ from the original observations θ̂.) Therefore F−1

θ (β)

is the β level bootstrap percentile of θ̂∗, say θ̂∗(β), giving
bca confidence limit

(2.6) θ̂bca[α] = θ̂∗(β(α)),

the β(α)th bootstrap percentile.
A first guess at forming bootstrap confidence intervals

might take β(α) equal α, which amounts to using the

“percentile method”; that is, to setting θ̂[α] equal the αth
bootstrap percentile. This is what we get from (2.3) if
z0 and a0 both equal zero. They both do go to zero at
stochastic rate Op(n−1/2) in sample size n. In practice,
however, the corrections β(α) in (2.3) are necessary for
the accuracy of bca limits.

The bootstrap cdf F̂ = Fθ̂ usually needs to be approxi-
mated by bootstrap resampling, either parametric or non-
parametric, as illustrated by the examples in Section 4 and
Section 5. F̂ also provides an estimate of the bias correc-
tor z0,

(2.7) z0 =Φ−1(p0) where p0 = F̂
(
θ̂
)
.

If p0 < 0.50, that is, if less than 50% of the bootstrap
replications θ̂∗ are less than θ̂, then θ̂∗ is upwardly biased
and the bias correction z0 is in the negative direction; and
conversely for p0 > 0.50.

For the student score correlation coefficient with θ̂ =
0.498,

(2.8) p0 =Prθ̂
{
θ̂∗ ≤ θ̂

}
= 0.478

and z0 =−0.056, being a small negative bias correction.
Fisher’s method assumes z0 = 0, partly accounting for its
discrepancies from the exact limits in Table 2. Section 3
reveals another cause.

By itself, the bootstrap distribution F̂ = Fθ̂ cannot
specify a confidence interval for θ. We need to know
something about distributions Fθ for θ away from θ̂. In
Figure 1 the central curve represents the parametric boot-
strap distributions, but it’s the two outlying curves that
determine the exact confidence limits.

The acceleration parameter a0 says just enough about
deviations of Fθ from Fθ̂ to allow construction of the bca
limits. Equation (4.4) of Efron (1987) gives the formula
for a0 in terms of the score function of the family Fθ ,

(2.9) a0 =
1

6
skewness (score function).

For the normal correlation coefficient, a0 was very close
to zero.

The bca confidence limits have several attractive fea-
tures:

• They are transformation respecting: in notation
(2.1),

(2.10) ϕ̂bca[α] =m
(
θ̂bca[α]

)
,

so there is never a question of working on the wrong
scale.

• They are second order accurate, with coverage er-
rors approaching nominal values at rate O(n−1) in
sample size n, which can make a major difference
in examples like that of Table 3.

• The are correct as well as accurate, in the same
sense as Fisher’s method for the normal correlation
coefficient; see Section 3.
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• They are automatable: a single program is avail-
able to handle a wide variety of situations without
requiring special work on the user’s part. See Re-
mark 13; this is especially convenient in nonpara-
metric applications.

In any one situation, the actual performance of the bca
intervals depends on how well the NSTF assumptions
(2.1)–(2.2) apply to the problem at hand. The diagnostic
function discussed next offers a data-based check on the
assumptions.

3. THE DIAGNOSTIC FUNCTION

The bca confidence interval endpoints (2.3) depend for
their validity on the NSTF assumptions (2.1)–(2.2): that
there exists a monotone transformation ϕ = m(θ) and
ϕ̂=m(θ̂) that results in a normal translation family (aug-
mented to allow for bias and changing standard error).
The diagnostic function of my title, discussed next, per-
mits us to test for NSTF structure against a wider class of
possibilities.

We have a one-parameter family of distributions de-
noted in cdf form as

(3.1)
{
Fθ
(
θ̂
)
, θ ∈Θ

}
,

for Θ an interval of the real line; (3.1) is a general-
ized scaled transformation family (GSTF) if there exists
a monotone transformation ϕ=m(θ) and ϕ̂=m(θ̂) such
that

(3.2)
ϕ̂= ϕ+ (1+ a0ϕ)

(
Z̃ − z̃0

)
,

where Z̃ =w(Z) [Z ∼N (0,1)] ,

with w(·) a differentiable monotone increasing function
satisfying

(3.3) w(0) = 0 and w′(0) = 1;

also, from (2.7),

(3.4) z̃0 =w(z0).

A GSTF is NSTF if w(z) = z. See Remark 1 in Section 6.
GSTF generalizes NSTF by allowing non-normality

on the ϕ scale. It will turn out, for example, that the
normal correlation family is better described with Z̃ a
student-t distribution rather than N (0,1). For n= 22 and
θ = 0.498, the degrees of freedom ν for the student-t dis-
tribution is about ν = 63, so

(3.5) w(z) = T−1
63 (Φ(z)),

where T63 is the student-t cdf; to the eye, w(z) is almost
indistinguishable from z.

The diagnostic function Dθ(z) was introduced in Efron
(1982) as an answer to the question of whether a one-
parameter family of distributions (3.1) could be trans-
formed into a normal translation family. For

(3.6) α=Φ−1(z),

we define

(3.7) Cθ(z) =
Ḟθ
(
θ̂
(α)
θ

)
φ(z)

,

where Ḟθ(θ̂) = (∂/∂θ)Fθ(θ̂), θ̂
(α)
θ is the αth percentile of

θ̂ given θ,

(3.8) Fθ
(
θ̂
(α)
θ

)
= α,

finally giving the diagnostic function Dθ(z),

(3.9) Dθ(z) =Cθ(z)
/
Cθ(0).

Dθ(z) is transformation invariant, remaining unchanged
under transformations such as (2.1).

Section 2 of Efron (1982) proves the following theo-
rem:

THEOREM 2. The diagnostic function for a GSTF,
that is a family satisfying (3.2)–(3.4), is

Dθ(z) =
1+w(z)ϵ0
w′(z)

,(3.10)

where

ϵ0 =
a0

1− a0z̃0
.(3.11)

Both a0 and z̃0 are usually small, making ϵ0
.
= a0, the rate

of change of standard deviation on the ϕ scale (Section 2).

In an NSTF (2.1)–(2.2), we have w(z) = z and w′(z) =
1, giving this informative result:

COROLLARY (to Theorem 2). The diagnostic func-
tion for an NSTF is

(3.12) Dθ(z) = 1+ zϵ0,

with ϵ0 = a0/(1− a0z0).

In other words, if {Fθ(z), θ ∈Θ} is an NSTF (2.1)–(2.2),
then Dθ(z) will be linear with slope ϵ0. There is also a
converse: if a0 and z0 are known (as they will be from
the bootstrap algorithm of Section 5) then ϵ0 = a0/(1−
a0z0), and Dθ(z) = 1 + zϵ0 implies that {Fθ(θ̂)} is an
NSTF. In this case Theorem 1 says that if Dθ(z) is linear,
then the bca confidence limits (2.3) are exact. Remark 2
in Section 6 verifies the converse to the corollary.

As a first example, suppose {Fθ(θ̂)} represents a
gamma scale family,

(3.13) θ̂ = θGν/ν,

where Gν is a standard gamma variate with ν degrees of
freedom,

(3.14) fθ
(
θ̂
)
=
θ̂ν−1e−νθ̂/θ

(
ν
θ

)ν
Γ(ν)

.
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FIG 3. Diagnostic function for Gamma scale family, df= 5,10,20 and
infinity; dashed lines are linear fits.

TABLE 4
Exact and bca limits for Gamma scale family, ν = 5.

α .025 .05 .1 .9 .95 .975

Exact .4882 .5462 .6255 2.055 2.538 3.080
bca .4884 .5464 .6256 2.056 2.541 3.089

Figure 3 shows Dθ(z) for four cases: ν = 5,10,20 and
the limiting case ν→∞.2 (Dθ(z) is the same for all θ in
family (3.13).) The plots look nearly linear, with a slight
upward bend, most evident for ν = 5. As ν→∞, the di-
agnostic function approaches

(3.15) Dθ(z) = 1 for all z,

the diagnostic function for a normal translation family
(1.8).

Is “nearly linear” good enough to guarantee the accu-
racy of the bca confidence intervals? The examples in
what follows show generally good bca performance even
under much more substantial deviations of Dθ(z) from
linearity, but the method can be pushed too far; see Re-
mark 5 in Section 6. For the gamma scale family (3.13)
we can compare the bca limits θ̂bca[α] with the exact lim-
its

(3.16) θ̂exact[α] = νθ̂
/
G(1−α)
ν ,

with G(1−α)
ν the (1− α) percentile of Gν . Table 4 makes

the comparison for ν = 5, θ̂ = 1, where we see almost
perfect agreement.

The slopes of the linear fits for ν = 5,10,20 in Figure 3
are

(3.17) ϵ̂0 = (0.150,0.106,0.0745)

2Remark 3 in Section 6 describes the calculation of Dθ(z).

compared with the theoretical values (3.11)

(3.18) ϵ0 = (0.152,0.107,0.0750)

obtained from (2.7) and (2.9).
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FIG 4. Diagnostic function for student-t translation model; degrees of
freedom 5, 10, 20, 40, 80 and infinity.

A less reassuring example is pictured in Figure 4. Here

(3.19) Fθ
(
θ̂
)
=Pr

{
Z̃ν ≤ θ̂− θ

}
,

where Z̃ν has a student-t distribution with ν degrees of
freedom. That is,

(3.20) θ̂ = θ+ Z̃ν ,

a student-t translation model; this is a GSTF (3.2) with

(3.21) ϕ= θ, z0 = a0 = 0, and Z̃ = Z̃ν .

Figure 4 shows diagnostic function Dθ(z) (the same
for all θ) for degrees of freedom ν = 5,10,20,40,80,
and ν →∞, the last being the ntf diagnostic Dθ(z) = 1.
Dθ(z) is definitely nonlinear, spectacularly so for ν = 5,
but this doesn’t necessarily mean that the bca intervals are
wrong. In fact, Remark 6 of Section 6 shows that in situ-
ation (3.21) formulat (2.3) is exactly correct. (That’s not
true if z0 or a0 is nonzero in (3.21).)

The heavy dashed curve in Figure 5 is the diagnostic
function relating to the correlation example in Section 1.
That is, Fθ̂(θ̂

∗) is the cdf for the Pearson correlation coef-
ficient θ̂∗ from a sample of n= 22 bivariate normal pairs
having true correlation θ̂ = 0.498. (Here the diagnostic
calculation (3.4)–(3.9) can be done theoretically, the boot-
strap notation being necessary only to avoid using vari-
able θ̂ for both true and observed correlations.)
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FIG 5. Diagnostic function for normal correlation Coef, n= 22 (heavy
dashed curve), compared to student-t translates from Figure 4.

Dθ(z) is seen to be slightly concave, like the student-t
translation diagnostic in Figure 4. The amount of curva-
ture matches a student-t curve with 63 degrees of free-
dom, though with a slight downward tilt left to right.
Fisher was nearly right, but not exactly so, in assuming
transformation (1.9) produced a normal translation fam-
ily.

4. GENERALIZED BOOTSTRAP CONFIDENCE
INTERVALS

We have a one-parameter family of cdfs {Fθ(θ̂), θ ∈Θ}
and wish to set confidence limits for θ having observed
θ̂. If the family satisfies the NSTF conditions (2.1)–(2.2),
Theorem 1 says that the bca limits (2.3) are exactly accu-
rate and correct. There is a generalized version of Theo-
rem 1 that applies to GSTF families (3.2), discussed next.

Formula (2.3) says that the level α bca confidence limit
θ̂bca[α] is the β[α] percentile of the bootstrap distribution
F̂ = Fθ̂ , where β[α] is given by (2.5). We can write β[α]
in terms of the standard normal cdf Φ(z):

(4.1) β[α] =

Φ

{
Φ−1(p0) +

Φ−1(p0) +Φ−1(α)

1− a0(Φ−1(p0) +Φ−1(α))

}
,

p0 = Φ(z0) = F̂ (θ̂) (2.7). The GSTF conditions (3.2)–
(3.4) replace Z ∼N (0,1) with

(4.2) Z̃ =w(Z).

Define Φ̃ to be the cdf of Z̃ ,

(4.3) Φ̃(z) = Pr
{
Z̃ ≤ z

}
=Φ(w−1(z)),

and

(4.4) β̃[α] =

Φ̃

{
Φ̃−1(p0) +

Φ̃−1(p0)− Φ̃−1(1− α)

1− a0
(
Φ̃−1(p0)− Φ̃−1(1− α)

)} .
THEOREM 3. If {Fθ(θ̂), θ ∈ Θ} is a GSTF (3.2), the

exact and correct level α upper confidence limit θ̂gbca[α]
for θ is

(4.5) θ̂gbca[α] = F̂−1
(
β̃[α]

)
.

The proof of Theorem 2 in Efron (1987) doesn’t rely
on any special properties of the normal cdf Φ(z) except
for its symmetry, z(α) =−z1−α) ( expression (4.4) equals
(4.1) if Φ̃ = Φ). The key step is to rewrite (3.2) as

(4.6) (1 + a0ϕ̂) = (1 + a0ϕ)
(
1 + a0(Z̃ − z̃0)

)
.

Taking logarithms gives

(4.7)

ζ̂ = ζ +Q, where

ζ̂ = log(1 + a0ϕ̂),

ζ = log(1 + a0ϕ), and

Q= log
(
1 + a0(Z̃ − z̃0)

)
.

The original parameterization {Fθ(θ̂)} has now been
transformed into a translation family ζ̂ = ζ+Q according
to the monotone mapping

(4.8) q(·) = log(1 + a0m(·)),

ϕ=m(θ) as before. The exact level α confidence limit in
translation family (4.7) is

(4.9) ζ̂[α] = ζ̂ −Q(1−α)

since

(4.10) Pr
{
ζ ≤ ζ̂[α]

}
=Pr

{
ζ̂ ≥ ζ̂(1−α)

}
= α.

By monotonicity, the inverse mapping θ̂[α] = q−1(ζ̂[α])
is exactly accurate. This gives Theorem 3; see Remark 7
for the proof.

The confidence limit (4.9) is correct as well as accurate,
in the Fisherian sense discussed in Section 1: model ζ̂ =
ζ + Q adds random variate Q to ζ , so (4.9) amounts to
stochastic subtraction.

The bca confidence limit θ̂bca[α] depends on the NSTF
model (2.1)–(2.2), while θ̂gbca[α] assumes the broader
GSTF model (3.2). How well justified are the NSTF as-
sumptions? Since θ̂bca[α] = F̂−1(β[α]) while θ̂gbca[α]−
F̂−1(β̃[α]) (4.5), the question amounts to asking how
closely does β[α] (4.1) match β̃[α] (4.4)? An answer is
developed for one-parameter models in what follows and
then extended to multiparameter models, with nuisance
parameters, in Section 5.
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Having observed θ̂ from model Fθ(θ̂) we obtain the
bootstrap cdf F̂ = Fθ̂ , p0 = Fθ(θ̂), a0 (2.9) and the diag-
nostic function Dθ̂(z), i.e., Dθ(z) (3.6)–(3.9) evaluated at
θ = θ̂ (called D0(z) below). Dθ(z) doesn’t depend on θ
in GSTF families; see Remark 8. None of these steps re-
lies on the choice of NSTF versus GSTF; they also give
z0 =Φ−1(p0) and ϵ0 = a0/(1− a0z0) (3.11).

Given ϵ0, the diagnostic function (3.10)

(4.11) D0(z) =
1+w(z)ϵ0
w′(z)

determines the function w(z). Let

(4.12) I(z) =

∫ z

0

1

D0(y)
dy.

THEOREM 4. If ϵ0 = 0,

(4.13) w(z) = I(z).

Otherwise

(4.14) w(z) =
1

ϵ0
(eϵ0I(z) − 1).

PROOF. If ϵ0 = 0 then (4.13) follows from w′(z) =
D0(z)

−1 = I ′(z), and w(0) = I(0) = 0 (3.3). If ϵ0 ̸= 0,
differentiating (4.14) gives

(4.15)

w′(z) = I ′(z)eϵ0I(z)

= I ′(z)(1 +w(z)ϵ0)

=
1

D(z)
(1 +w(z)ϵ0),

which is (4.11).

The function w(z) determines the cdf Φ̃(z) (4.3),

(4.16) Φ̃(z) = Pr{w(Z)≤ z}=Φ(w−1(z)),

and also

(4.17) z̃0 = Φ̃−1(p0) = Z̃(p0) =w(Z(p0)) =w(z0).

(Because w(0) = 0 and w′(0) = 1, z̃0 is usually close to
z0.)

We now have all the ingredients for β̃[α] (4.4). In the
following examples an equivalent level α̃ is calculated;
that is, the value α̃ that makes

(4.18) β̃(α̃) = β(α).

If α̃ is close to α then θ̂bca[α] is close to θ̂gbca[α], support-
ing the robustness of the bca method to deviations from
the NSTF assumptions.

Table 5 shows the equivalent level α̃ for six choices of
α, for the student score normal correlation coefficient, Ta-
ble 2. In this case the agreement is nearly perfect, though

TABLE 5
Equivalent GSTF level α̃ for nominal NSTF level α (4.18); student

score correlation coefficient (Table 2).

α .025 .05 .1 .9 .95 .975
α̃ .0247 .0495 .0995 .8996 .9496 .9747

there is a hint of overcoverage at α= 0.025 and undercov-
erage at α = 0.975. (We also saw that in Table 2, where
we had the advantage of knowing exact limits.) The ex-
amples of this paper show generally good accuracy for
the bca intervals, but see Remark 9 for a counterexample.

The corollary in Section 3 says that diagnostic function
Dθ(z) is linear if and only if {Fθ(θ̂)} is NSTF. Theorem 5
describes the nonlinearity of Dθ(z) in GSTF models. We
start with the GSTF model (3.2),

(4.19) ϕ̂= ϕ+ σϕ(Z̃ − z̃0) (σϕ = 1+ a0ϕ),

where Z̃ = w(Z) has cdf Φ̃(·), and z̃0 = Φ̃−1(p0) as in
(4.2)–(4.4). For convenience we assume that Z̃ has me-
dian zero

(4.20) z̃(0.5) = Φ̃−1(0.5) = 0

(which can always be achieved by subtracting the original
median from Z̃ and z̃0).

THEOREM 5. A GSTF (4.19)–(4.20) has diagnostic
function

(4.21) D0(z) = (1 + ẑ(α)ϵ0) · r(z),

with ϵ0 = a0(1 − a0z̃0)
−1, Z̃(α) = Φ̃−1(α), the α per-

centile of Z̃ , and

(4.22) r(z) =
φ̃(ẑ(α))/φ̃(0)

φ(z(α))/φ(0)
,

φ̃ and φ the densities of Z̃ and Z . See Remark 11 for the
proof.

Table 6 applies Theorem 5 to the case where Z̃ in (3.2)
has a student-t distribution with 10 degrees of freedom,

(4.23) Z̃ =w(Z) = T−1
10 Φ(Z),

T10 the t10 cdf. Equivalence levels α̃ are shown for six
choices of α and nine choices of (z0, a0), covering a sub-
stantial range of possibilities. The match of α̃ to nom-
inal α is generally good. For (z0 = −0.15, a0 = −0.1)
we see some overcoverage at α= 0.025 and undercover-
age at α = 0.975, with the opposite being true at (z0 =
0.15, a0 = 0.1). All told, the bca limits look reasonably
robust under GSTF model (3.2)–(4.21) but, as discussed
in Remark 9, things are worse if Z̃ in (3.2) has an asym-
metric distribution.

The diagnostic functions are shown in Figure 6 for the
extreme cases (z0, a0) = (−0.15,−0.1) and (0.15,0.1) of
Table 6 (along with (0,0)). D0(z) is strongly nonlinear in
both cases, with some effects on the accuracy of θ̂bca[α],
but not disastrous ones.
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TABLE 6
Equivalent level α̃ corresponding to nominal NSTF level α for

various choices of z0 and a0; student-t translation model (4.21), 10
degrees of freedom.

Nominal level
z0 a0 .025 .05 .1 .9 .95 .975

.00 .0 .025 .050 .100 .900 .950 .975

.00 .1 .026 .051 .101 .901 .951 .978

.00 −.1 .022 .049 .099 .899 .949 .974

.15 .0 .028 .053 .103 .905 .955 .979

.15 .1 .029 .054 .104 .906 .956 .984

.15 −.1 .027 .053 .103 .905 .954 .978

−.15 .0 .021 .045 .095 .897 .947 .972
−.15 .1 .022 .046 .095 .897 .947 .973
−.15 −.1 .016 .044 .094 .896 .946 .971
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FIG 6. Diagnostic functions for student-t translation model (4.21): (1)
z0 = −0.15, a0 = −0.10; (2) z0 = 0, a0 = 0; (3) z0 = 0.15, a0 =
0.10.

5. MULTIPARAMETER MODELS AND NUISANCE
PARAMETERS

The discussion so far has focused on one-parameter
models Fθ(θ̂). However, the real need for approximate
confidence intervals arises in multiparametric situations
where the observed data depends on nuisance parame-
ters as well as the parameter of interest θ. The bca con-
fidence limits are designed to handle multidimensional
problems, and this section extends the diagnostic equiv-
alence methodology to such situations.

So far our only multiparameter calculations concerned
the “maxeig” example (1.12) for the student score data.
Table 3 in Section 1 showed the 95% bca interval for max-
eig extending much farther to the right than the standard
interval, and less far to the left. Can we believe the bca re-
sults? Figure 7 graphs the diagnostic function. It isn’t per-
fectly linear, but the equivalence calculations in Table 7
show excellent agreement between α̃ and α–a strong ar-

TABLE 7
Nominal level α and equivalent α̃, student score maximum

eigenvalue.

α .0250 .0500 .1000 .900 .950 .975
α̃ .0244 .0495 .0996 .899 .948 .979

gument in favor of the bca maxeig interval, or at least for
the underlying NSTF assumptions.
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z0 = 0.170,  a0 = 0.114

FIG 7. Diagnostic function for maxeig, student score data; raw
(dashed) and smoothed (solid).

Figure 7 is based on an extension of the previous the-
ory to multiparameter exponential families, those having
density functions

(5.1) gη(y) = eη
⊤y−ψ(η)g0(y).

Here η is the natural parameter and y the sufficient statis-
tic, both η and y being p-dimensional vectors; g0(y) is
the “base density”, while exp{ψ(η)} is the constant that
makes gη(y) integrate to 1. The expectation vector

(5.2) µ=Eη{y}
can be obtained as the gradient of ψ(η); see for instance
Efron (2023).

We wish to set confidence intervals for a real-valued
parameter θ,

(5.3) θ = t(µ),

for which we have the maximum likelihood point estimate

(5.4) θ̂ = t(y).

The normal sampling model used in Section 1,

(5.5) xi
ind∼ N5(γ,Σ), i= 1, . . . , n= 22,

is of exponential family form (5.1). In this case the suffi-
cient vector y has p= 20 components,

(5.6) y =
(
x̄1, x̄2, . . . , x̄5, x̄

2
1, x̄

2
2, . . . , x̄

2
5,

x1x2, x1x3, . . . , x4x5
)
,
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the bars indicating averages over the columns of the data
matrix in Table 1. In Table 2, θ was the population corre-
lation coefficient

(5.7) θ =
Σ12

(Σ11Σ22)1/2
,

while θ was the maximum eigenvalue of Σ in Table 3.
The bca confidence algorithm used in what follows de-

pends on parametric bootstrap sampling: if ζ̂ is the MLE
of η in model (5.1), we draw B resamples of y from gζ̂ ,

(5.8) y∗1, y
∗
2, . . . , y

∗
B

iid∼ gζ̂(·),

for each one evaluating the bootstrap replication of θ̂,

(5.9) θ̂∗i = t(y∗i ), i= 1, . . . ,B.
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FIG 8. B = 4000 normal theory parametric bootstrap replications,
maxeig statistic, student score data (MLE 683).

Figure 8 shows the histogram of B = 4000 resamples
(at least twice more than necessary) of the maxeig statis-
tic, obtained by sampling from model (5.5) with γ and Σ
set equal to their usual maximum likelihood estimates. It
is long-tailed to the right, accounting for some of the dif-
ference between the standard and bca intervals in Table 3.

Family gη(y) (5.1) induces a distribution for θ̂ = t(y),
but one that usually depends on the full natural param-
eter η or equivalently the expectation vector µ, not just
θ = t(µ). The key step in the bca algorithm is the reduc-
tion of (5.1) to a data-based one-parameter family of dis-
tributions for θ̂∗ = t(y∗),

(5.10) fλ
(
θ̂∗i
)
= eλṫ

⊤
0 (y∗i −ȳ)−ϕ(λ)f0

(
θ̂∗i
)
,

where ȳ =
∑B

i=1 yi/B), defined for a range of the real-
valued parameter λ that includes 0. Here ȳ is considered
fixed at its observed value, only y∗i being variable.

In (5.10), ṫ0 is the gradient vector of t(y∗) evaluated at
ȳ,

(5.11)

ṫ0 =

(
∂t(y∗)

∂y∗1
,
∂t(y∗)

∂y∗2
, . . . ,

∂t(y∗)

∂y∗p

)∣∣∣∣
y∗=ȳ

and ϕ(λ) = log

(
B∑
i=1

eλṫ
⊤
0 (y∗i −ȳ)/B

)
.

The base density f0(θ̂
∗) is discrete, putting probability

B−1 on each value θ̂∗i , i = 1, . . . ,B, which is to say it
represents the bootstrap distribution of θ̂∗, as pictured for
example in Figure 8.

Family (5.10) “tilts” the bootstrap density f0(θ̂∗) pro-
portionally to exp{λd∗i }, where

(5.12) d∗i = ṫ⊤0 (y
∗
i − ȳ);

θ̂ + d∗i is the first-order Taylor series approximation to
θ̂∗(y∗), in the direction ṫ0. The choice of ṫ0 as the crucial
tilting direction in (5.10) is based on the least favorable
family construction of Stein (1956); see Remark 12.

The reduction to model (5.10) puts us back in a one-
parameter framework, with cdf at value t equaling

(5.13) Fλ(t) =
∑
θ̂∗i ≤t

fλ
(
θ̂∗i
)
.

LEMMA. The partial derivative of Fλ(t) with respect
to λ at λ= 0 is

(5.14) Ḟ0(t) =
1

B

∑
θ̂∗i ≤t

di.

PROOF. The derivative of fλ(θ̂∗i ) = exp{λdi − ϕ(λ)}
B−1 with respect to λ is

(5.15) ḟλ
(
θ̂∗i
)
= (di − d̄λ)Fλ

(
θ̂∗i
)
,

where

d̄λ =

∑B
1 die

λdi∑B
1 e

λdi
;

then

Ḟλ(t) =
∑
θ̂∗i ≤t

ḟλ
(
θ̂∗i
)
.

At λ= 0, d̄λ = 0 and fλ(θ̂∗i ) =B−1, giving (5.14).

Starting from (5.14), we can compute the diagnostic
function D0(z) as in (3.6)–(3.9). In Figure 7, D0(z) for
the student score maxeig parameter was calculated in this
way. The bca algorithm provided z0 = 0.170, a0 = 0.114,
ϵ0 = 0.116 (3.11), w(z) (4.14), and finally the equiva-
lence values α̃ in Table 7 (4.18). All of these calcula-
tions are based on the same bootstrap replications used
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for the bca confidence limits and require almost no addi-
tional computer time.

The discussion so far concerned parametric models like
(5.5), but the diagnostic theory applies just as well to non-
parametric situations. Our observed data is an n×m ma-
trix X , such as the student scores in Table 1 where n= 22
and m = 5. The rows xi are independent and identically
distributed draws from some unknown distribution G on
Rm, but G can be anything at all.

The target parameter is some function θ = T (G) of the
distribution G, which we estimate by θ̂ = t(X); very of-
ten t(X) is

(5.16) θ̂ = t(X) = T
(
Ĝ
)
,

where Ĝ is the empirical distribution

(5.17) Ĝ : probability n−1 on xi for i= 1, . . . , n.

For the correlation example (1.3), T (Ĝ) is the empirical
correlation between the first two columns of X , i.e., the
usual Pearson correlation estimate. This is θ̂ = 0.498, the
same as the normal theory estimate (1.4), but the non-
parametric and parametric confidence intervals for θ are
different.

A nonparametric bootstrap data matrix X∗ has its n
rows chosen randomly and with replacement from the
rows of X . That is, its ith row x∗i is

(5.18) x∗i = xI(j),

where I(1), I(2), . . . , I(n) is a sample of size n drawn
independently with replacement from the uniform distri-
bution on {1, . . . , n}; X∗ gives a bootstrap replication of
θ̂,

(5.19) θ̂∗ = t(X∗).

Nonparametric bootstrap resampling falls into the mul-
tidimensional exponential family framework (5.1). The
connection is through the multinomial distribution, which
is an n-dimensional exponential family, with sufficient
vector y equaling (y(1), . . . , y(n)) where y(j) is the num-
ber of times xj occurs in the bootstrap sample. Section 5.7
of Efron (2023) provides a full discussion.

Given the data X , there are a great many parametric
models available but only a single nonparametric one:
(5.18)–(5.19). This makes possible a single program that
handles all nonparametric bca applications in a fully auto-
matic way. Figure 9 shows diagnostic function D0(z) for
the student score correlation coefficient, calculated from
B = 4000 nonparametric bootstrap replications. It resem-
bles the parametric function in Figure 5 of Section 3, but
now with student-t translation degrees of freedom about
40 rather than 63.

Figure 10 plots the 4000 points (d∗i , t
∗
i ) used for the

computation in the lemma (5.14). For z = 1, α = 0.841,
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FIG 9. Nonparametric diagnostic function for student score correla-
tion; B = 4000 bootstraps; raw (dashed) and smoothed (solid).
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FIG 10. t∗ versus d∗ for the 4000 bootstrap replications; dashed line
for D(z = 1).

the bootstrap percentile θ̂∗(α) was 0.676, the height of the
dashed line, illustrating the estimation of D0(1); there is
almost perfect equivalence between α̃ and α. All of this
required only a single algorithmic call; see Remark 13.

Logistic regression is perhaps the most widely used
parametric estimation model. Table 8 summarizes an ex-
ample: 130 very sick babies at an African care facility
had six health predictors measured at entry; 68 of the 130
died (see Remark 13). The investigators wished to predict
which children were most at risk. Table 8 shows the out-
put of a standard logistic regression program where the
respiratory distress measure “resp” is seen to be the most
predictive, with MLE point estimate θ̂ = 1.10.

A parametric bca analysis gave these 95% confidence
intervals for resp:

(5.20) bca(0.32,1.70) standard(0.38,1.82).

The bca interval was based on B = 4000 “Bernoulli”
replications; see Remark 14. These also gave the diag-
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TABLE 8
Estimates and significance levels for six predictors of death:

gestational age, body weight index, respiratory rate, cpap airway
blockage, mental acuity, heart rate. Logistic regression, study of 130

very sick babies at an African birth facility.

Estimate z-value p-value

Gest −.86 −1.92 .05
Bwei .03 .08 .93
Resp 1.10 3.42 .00
CPAP .04 .13 .89
Ment .39 1.55 .12
Rate −.66 −2.36 .02

TABLE 9
Equivalent GSTF levels α̃ corresponding to nominal NSTF level α;

logistic regression study.

α .0250 .050 .100 .900 .950 .975
α̃ .0192 .048 .098 .899 .949 .974

nostic function in Figure 11, from (5.14), and the equiv-
alence values in Table 9. The equivalences are good but
not perfect, with a tendency to overcoverage (i.e., α̃ < α)
for small α.
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FIG 11. Diagnostic function for logistic regression study; from B =
4000 Bernoulli resamples.

The bias correction value z0 has almost no effect on
D0(z) or w(z), (4.13)–(4.14), but it can affect the bca
endpoints θ̂bca[α]. That is the case here, where the large
negative value z0 = −0.270 is reflected in the leftward
shift of the bca interval.

6. REMARKS AND DISCUSSION

The remarks in this section expand on points raised in
the text. A brief discussion ends the paper.

6.1 Remarks

REMARK 1 (More General GSTF Form). The orig-
inal GSTF definition in Efron (1982) was broader than
(3.2):

(6.1) ϕ̂= νϕ + σϕw(Z) (Z ∼N (0,1)),

when νϕ and σϕ > 0 are differentiable functions of ϕ. Our
formulation (3.2) follows (6.1), with

(6.2) νϕ = ϕ(1− a0z̃0) and σϕ = 1+ a0ϕ,

or, letting ϕ̃= ϕ(1− a0z̃0),

(6.3) νϕ̃ = ϕ̃ and σϕ̃ = 1+ ϵ0ϕ̃

where ϵ0 = a0(1− a0z̃0)
−1 as in (3.11).

REMARK 2 (Converse to the Corollary to Theorem 2).
The corollary states that an NSTF (2.1)–(2.2) has lin-
ear diagnostic function Dθ(z) = 1 + zϵ0. Conversely, if
Dθ(z) is linear with slope ϵ0, then the only GSTF hav-
ing that value of ϵ0 is an NSTF. This is immediate from
Theorem 4: Dθ(z) = 1+ zϵ0 given

(6.4) I(z) =
1

ϵ0
log(1 + ϵ0z)

from (4.12), and w(z) = z from (4.14); that is, Z̃ = Z ,
which is the definition of an NSTF. There are non-NSTF
choices giving Dθ(z) = 1 + zϵ0, but they must have pa-
rameter ϵ0 in (4.14) not equaling the slope ϵ0. (See Re-
mark 8.)

REMARK 3 (Scale and Translation Families). Sup-
pose

(6.5) θ̂ = θX (θ > 0),

where X is a positive random variable with known cdf
F1(x). For the gamma scale family (3.13)–(3.14), X was
Gν/ν. The cdf of θ̂ given θ is

(6.6) Fθ
(
θ̂
)
= F1

(
θ̂/θ
)
,

so that

(6.7) Ḟθ
(
θ̂
)∣∣∣
θ=1

=−θ̂f1
(
θ̂
)
,

where f1(x) is the density of X .
Following through definitions (3.7)–(3.9), the diagnos-

tic function is

(6.8) Dθ(z
(α)) =

x(α)f1(x
(α))/φ(z(α))

x(0.5)f1(x(0.5))/φ(0)
,

not depending on θ.
Figure 4 concerns a translation model,

(6.9) θ̂ = θ+X,
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withX a student-t variate in (3.20). Then Fθ(θ̂) = F1(θ̂−
θ) leads to the diagnostic function

(6.10) Dθ(z
(α)) =

f1(x
(α))/φ(z(α))

f1(x(0.5))/φ(0)
,

graphed in Figure 4.
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FIG 12. Poisson distribution diagnostic functions for µ = 5,10, and
15.

REMARK 4 (One-parameter Exponential Families).
A one-parameter exponential family X ∼ fθ(x) has den-
sities

(6.11) fθ(x) = eθx−ψ(θ)f0(x), x ∈ (xlo, xup),

where the range (xlo, xup) may be infinite. (The gamma
scale family (3.5) can be rewritten in form (6.11).) The
derivative of fθ(x) with respect to θ is

(6.12) ḟθ(x) = (x− µθ)fθ(x),

where µθ = ψ̇(θ) is the expectation parameter Eθ{X}.
This leads to the following expression for the diagnostic
function:

(6.13) Dθ(z
(α)) =

∫ x(α)

xlo
(x− µθ)fθ(x) dx∫ x(0.5)

xlo
(x− µθ)fθ(x) dx

,

closely related to the lemma of Section 5 (5.14).
The Poisson family,

(6.14) fµ(x) = e−µµx/x! for x= 0,1, . . . ,

can be written in form (6.11). Figure 12 shows diagnos-
tic function Dµ(z) for µ = 5,10, and 15. Here the dis-
creteness of (6.14) has been taken into account by a “half-
atom” correction to the cdf,

(6.15) Fµ(x) =

x−1∑
y=0

fµ(y) +
1

2
fµ(x).

TABLE 10
Weibull scale parameter family; nominal NSTF levels α and actual

equivalent GSTF levels α̃.

α .0250 .0500 .100 .900 .950 .975
α̃ .0254 .0503 .100 .941 .941 .941

Dµ(z) is close to linear even for µ= 5, where definition
(6.15) is most questionable.

In one-parameter exponential families, including the
Poisson, both z0 and a0, (2.7) and (2.9), are closely ap-
proximated by

(6.16) z0 = a0 = skewness(x)/6.

These determine ϵ0, which together with Dµ(z) provides
the equivalence table. For µ= 10 and µ= 15, α̃ matched
α to three decimal places; for µ = 5, α̃ = 0.024 for α =
0.025, with similar errors at α= 0.05,0.10,0.9,0.95 and
0.975. Exact intervals are available for the Poisson, for
which the bca limits give about two-place accuracy.

REMARK 5 (Weibull Scale Family). A scaled Weibull
variate θ̂ takes the form

(6.17) θ̂ = θX1/c,

where c has a known positive value and X has a Gamma
distribution with one degree of freedom, f(x) = exp(−x)
for x > 0. The monotone mappings γ̂ = θ̂c and γ = θc

transform (6.17) to

(6.18) γ̂ = γX,

a Gamma scale family with degrees of freedom equal 1,
where, from (6.16),

(6.19) z0 = a0 = 0.337.

The equivalence table in Table 10 looks fine on the left
but disastrous on the right. Dθ(z) is highly curved in this
case — roughly six times more curved than the ν = 5 line
in Figure 3 — but more of the trouble comes from the
large values of z0 and a0. The “corrected z-value”

(6.20) Z =
z0 + (z0 + z(α))

1− a0(z0 + z(α))

in the bca formula (2.3) is 64.9 for α= 0.975, far beyond
the reasonable range, say |Z|< 4, for the bca corrections
to the standard intervals. A confidence interval is an am-
bitious enterprise in that it attempts to account for both
bias and variability; as mentioned earlier, the bca formula
can be pushed too far, particularly if the bias corrections
need to be enormous.

REMARK 6 (A Case Where NSTF Equals GSTF).
Suppose a0 = 0, p0 = Fθ̂(θ̂) = 0.50, and Z̃ is symmet-
rically distributed around zero (as it is for the student-t
model (4.21)). Then α̃= α, i.e., θ̂bca[α] is the same as the
GSTF confidence limit θ̂gbca[α].
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PROOF. We have a0 = 0 and z̃0 = Φ̃−1(p0) = 0, so
(4.4) gives

(6.21) β̃[α] = Φ̃
{
− Φ̃(1− α)

}
= Φ̃

{
Φ̃−1(α)

}
= α,

which implies β̃[α] = β[α] = α. Here we have used
−Φ̃(1− α) = Φ̃(α) by symmetry.

The top row of Table 6 illustrates this result.

REMARK 7 (Proof of Theorem 3). Working on the
transformed scale ϕ (2.1)–(2.2), we wish to show that the
generalized bca confidence limit ϕ̂gbca[α](4.5) is accurate
and correct given the GSTF model (3.2); that is, that

(6.22) ϕ̂gbca[α] = F−1

ϕ̂

(
β̃[α]

)
is the appropriate confidence level limit, where Fϕ̂ is the

cdf of ϕ̂∗ if ϕ= ϕ̂, and

(6.23) β̃[α] = Φ̃

{
z̃0 +

z̃0 − z̃(1−α)

1− a0(z̃0 − z̃(1−α))

}
.

The proof depends on the transformation invariance of
confidence intervals, bootstrap distributions, and bca for-
mulas under monotone mappings.

The GSTF model ϕ̂ = ϕ + (1 + a0ϕ)(Z̃ − z̃0) can be
written as

(6.24)

γ̂ = γR where

γ̂ = 1+ a0ϕ̂,

γ = 1+ a0ϕ, and

R= 1+ a0(Z̃ − z̃0),

an exponentiated form of (4.7). This is a scale parameter
model: having observed ϕ̂, the accurate and correct level
α confidence limit for γ is

(6.25) γ̂[α] = γ̂/R(1−α).

Define β as the value satisfying

(6.26) R(β) = 1/R(1−α),

so γ̂[α] = γ̂R(β) for any choice of β.
The parametric bootstrap distribution of γ̂∗ given γ̂ is

(6.27) γ̂∗ ∼ γ̂R,

so

(6.28) γ̂[α] = γ̂R(β) = γ̂∗(β),

the βth bootstrap percentile of γ̂∗. Transformation invari-
ance implies that

(6.29) γ̂[α] = ϕ̂∗(β)

for any value of ϕ̂. Since ϕ̂∗(β) = F−1

ϕ̂
(β) (given an infi-

nite number of bootstrap replications), the proof of Theo-
rem 3 requires showing that β̃[α] (6.23) equals β.

TABLE 11
Equivalence table if D(z) = 1+ 0.1z but true value of ϵ is zero.
NSTF intervals are too long on the left and too short on the right.

α .0250 .0500 .1000 .900 .950 .975
α̃ .0074 .0245 .0708 .872 .921 .949

Consider the case ϕ̂ = 0, γ̂ = 1, for which R(1−α) =
1− a0(z̃0 − z̃(1−α)),

(6.30) γ̂[α] =
[
1− a0(z̃0 − z̃(1−α))

]−1
,

and

(6.31) ϕ̂[α] =
1

a0

(
γ̂[α]− 1

)
=

z̃0 − z̃(1−α)

1− a0(z̃0 − z̃(1−α))
.

But for ϕ̂= 0, ϕ̂∗ ∼ Z̃ − z̃0 has

(6.32) ϕ̂∗(β) = Z̃(β) − z̃0 = Φ̃−1(β)− z̃0

(remembering that Φ̃ is the cdf of Z̃). Combining (6.31)
and (6.32) gives

(6.33) Φ̃−1(β) = z̃0 +
z̃0 − z̃(1−α)

1− a0(z̃0 − z̃(1−α))

or

(6.34) β = Φ̃

{
z̃0 +

z̃0 − z̃(1−α)

1− a0(z̃0 − z̃(1−α))

}
= β̃[α],

showing that ϕ̂gbca[α] = F−1

ϕ̂
(β̃[α]). By transformation

invariance, this implies θ̂gbca[α] = F̂−1(β̃[α]), verifying
Theorem 3.

REMARK 8 (Dθ(z) and Unidentifiability). Accord-
ing to Theorem 4 (4.13)–(4.14),Dθ(z) (which determines
I(z)) and ϵ0 together determine the function w(z), which
in turn determines the equivalence calculations. Dθ(z) by
itself, however, does not provide w(z): for any possible
value of ϵ0, w(z) as given by (4.13)–(4.14) produces the
same Dθ(z) (3.10).

Suppose, for instance, Dθ(z) = 1+0.1 · z, the diagnos-
tic function for an NSTF having ϵ0 = a0(1− a0z0)

−1 =
0.1. However, Dθ(z) is also the diagnostic function for a
GSTF having ϵ0 value zero and

(6.35) w(z) = I(z) =
1

0.1
log(1 + 0.1 · z),

as in (6.4) and (4.13). If in fact the GSTF model (6.35)
was correct, the NSTF confidence limits θ̂bca[α] based on
ϵ0 = 0.1 would be terrible, as shown by Table 11. The bca
algorithm provides estimates of an appropriate value of
ϵ0, as well as Dθ(z), helping avoid this kind of problem.
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FIG 13. Diagnostic function, Gamma translate ν = 10 (dashed is tan-
gent line).

TABLE 12
Equivalence table for gamma translate model (6.34). NSFT intervals

are much too short on the left and long on the right.

α .025 .050 .100 .900 .950 .975
α̃ .086 .114 .158 .963 .994 .994

REMARK 9 (An Asymmetric GSTF). Suppose we
have a gamma translation model,

(6.36) θ̂ = θ+Q (Q∼Gν),

Gν gamma with ν degrees of freedom. (Not the gamma
scale model (3.13).) This is already in the GSTF form
(4.7), with θ = ζ , θ̂ = ζ̂ , z0 = 0, and a0 = 0. The GSTF
limits are exact in this case,

(6.37) θ̂gbca[α] = θ̂−Q(1−α),

but the NSTF limits are different,

(6.38) θ̂bca[α] = θ̂+Q(α).

The asymmetry, G(α)
ν ̸=−G(1−α)

ν , is severe for ν = 10.
Model (6.36) gives the curved diagnostic function seen in
Figure 13. Carrying through the equivalence calculations
shows how badly θ̂bca[α] performs in this case, as shown
in Table 12. In a genuine data analysis, Table 12 would
fulfill its purpose by warning against the bca intervals.

REMARK 10 (Dθ(z) Not Depending on θ). The fact
that a GSTF can be transformed into a translation fam-
ily (4.7) implies that its diagnostic functions Dθ(z) do
not depend on θ. Figure 14 shows Dθ(z) for θ equaling
0.298, 0.498, 0.698 and 0.798, for a normal correlation
coefficient with n = 22. There is a small amount of de-
pendence on θ (though not enough to affect the equiva-
lence tables), showing that Fθ(θ̂) isn’t exactly GSTF.
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FIG 14. Diagnostic function normal correlation coef n= 22; for ob-
served ρ= 0.298,0.498,0.698,0.798.

REMARK 11 (Proof of Theorem 5). Family (4.19) has
cdfs Fϕ(ϕ̂) = Φ̃[(ϕ̂ − ϕ)σ−1

ϕ + z0]. Differentiating with
respect to ϕ gives

(6.39) Ḟϕ(ϕ̂) =
−(1 + a0ϕ̂)

σ2ϕ
φ̃

(
ϕ̂− ϕ

σϕ
+ z̃0

)
.

There is no loss of generality in taking ϕ= 0, σϕ = 1. (If
actually ϕ= ϕ0, redefining the transformation m(θ) from
ϕ=m(θ) to (m(θ)− ϕ0)σ

−1
ϕ0

makes ϕ= 0.) Then (6.39)
becomes

(6.40) Ḟ0(ϕ̂) =−(1 + a0ϕ̂)φ̃(ϕ̂+ z̃0).

For ϕ= 0 the α percentile ϕ̂(α) = Z̃(α) − z̃0, giving

(6.41)
Ḟ0(ϕ̂

(α))

φ(z(α))
=

−
[
1 + a0(Z̃

(α) − z̃0)
]
φ̃(Z̃(α))

φ(z(α))
,

and, from (3.7)–(3.9),

(6.42) D0(z) =
1+ a0(Z̃

(α) − z̃0)

1− a0z̃0
r(z),

which is the same as (4.21)–(4.22).

REMARK 12 (Stein’s Least Favorable Family). For
points y∗i near ȳ, θ∗i = t(y∗i ) changes most rapidly in
direction ṫ0 (5.11). Stein (1956) showed that in family
(5.10) the variance of θ̂∗ at λ = 0 is not less than the
Fisher information bound for estimating θ in the full p-
dimensional exponential family. Any choice of tilting di-
rection other than ṫ0 makes the one-dimensional variance
smaller, which is to say that ṫ0 is least favorable. Section
6 of Efron (1987) discusses the least favorable family’s
role in the bca algorithm.
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TABLE 13
Partial output of nonparametric bootstrap confidence interval

program bcadiag, B = 4000, applied to respiratory predictor of
sick babies study, Table 8. First two columns are an equivalence table
that shows close correspondence between nominal NSTF level α and

GSFT level α̃, except at α= 0.025 where NSTF endpoint is
conservative. Last two columns compare NSTF and standard

endpoints. Column β shows percentiles of 4000 bootstrap
replications giving bcalims.

α α̃ β bcalims Standard

.025 .014 .005 .311 .277

.050 .050 .014 .406 .409

.100 .101 .037 .536 .561

.160 .162 .070 .644 .681

.500 .500 .329 1.015 1.096

.840 .841 .704 1.399 1.512

.900 .901 .791 1.506 1.632

.950 .951 .875 1.671 1.783

.975 .975 .925 1.833 1.915

REMARK 13 (Computer Programs). The R program
bcadiag, available from the author, performs nonpara-
metric bca/diagnostic calculations. Table 13 shows part of
the output of the call

(6.43) bcadiag (4000,X,func),

where B = 4000 was the number of nonparametric boot-
strap replications; X was the 130 × 7 data matrix for
the sick babies study of Table 8, having ith row the six
predictors and response (lived or died) for baby i; and
func(X∗) computed θ̂∗, the “resp” coefficient estimated
from bootstrap data matrix X∗. (Running time was about
2.5 seconds.)

The equivalence levels α̃ nearly match the nominal
bca levels α except at α = 0.025, where θ̂bca[α] is
conservative–similarly to the parametric results in Ta-
ble 9. Call (6.43) also returns the diagnostic function
Dθ(z) and w(z) (3.2).

Program bcadiag is completely automatic in the
sense described in Section 1: it applies to all one-sample
nonparametric situations without requiring any more from
the user beyond func. Parametric bootstrap calculations
are less automatic. They were carried out for this paper
using augmented versions of algorithm bcapar from
the CRAN package bcaboot; the algorithm requires
preliminary calculation of bootstrap replications, as de-
scribed in Efron and Narasimhan (2020).

REMARK 14 (Logistic Regression of the Sick Babies
Data). The “Bernoulli” bootstrap replications used for
Figure 11 and Table 9 were carried out as follows: the
initial logistic regression gave estimated probability π̂i for
the ith baby’s death; bootstrap response vector y∗ then
took

(6.44) y∗i
ind∼ bern(π̂i) for i= 1, . . . ,130;

Standard

NSTF

GSTF

Actual

FIG 15. Three possible target classes for setting approximate confi-
dence intervals.

logistic regression of y∗ on x, the original 130×6 matrix
of predictions, gave bootstrap replications resp∗. The data
for Table 8 is part of a larger study reported in Mediratta
et al. (2020).

6.2 Discussion

Applied statisticians depend heavily on an extended
version of the central limit theorem in which estimators
θ̂ = t(x) typically approach normality,

(6.45) θ̂ ∼̇ N (θ,σ2),

as the information in x grows asymptotically large. Just
what constitutes “large” depends on the situation. For
the student score correlation of Section 1, n = 22 was
not large enough, with Figure 1 making clear the non-
normality of θ̂. Fisher’s transformation (1.9) greatly ac-
celerates convergence to normality. The bca method au-
tomates Fisher’s method, effectively reducing by an order
of magnitude the sample size needed for the accuracy of
the central limit theorem calculations.

Justification for the bca intervals depends on the NSTF
structure (2.1)–(2.2). The paper develops data-based
methods — diagnostic functions and equivalence tables
— for assessing the plausibility of the NSTF assump-
tions. A larger class of possible models, GSTF (3.2), is
used to estimate the actual coverage claimed for a given
bca interval.

Figure 15 portrays the setting of approximate confi-
dence intervals in schematic terms. Three increasingly
broad classes of possible assumptions are pictured, each
of which suggests its confidence interval formula. The
standard intervals (1.1), by far the most widely used, de-
pend on the normal translation class (6.45), represented
by the dot at the center of Figure 15. The much larger
NSTF class leads to the bca intervals (2.3). Still larger,
the GSTF class gives the gbca intervals (4.5).
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Presented with an actual estimation problem (the “Ac-
tual” point in Figure 15), for instance the sick babies lo-
gistic regression example in Section 5, we don’t expect
any of the classes to fit perfectly, but hope to be close
enough to one of them to get an accurate interval. The
diagnostic/equivalence calculations of this paper offer a
guide to the accuracy of a given bca interval. Figure 5,
for example, suggests that NSTF is a close but not per-
fect fit for the student score correlation problem, while
equivalence Table 5 offers reassurance for using the bca
formula.

In the schematic diagram, Actual lies closer to the
NSTF oval than the Standard point. This has to be true in
an asymptotic sense since bca gives second-order accurate
intervals, compared to the first-order standard intervals.
GSTF fills an even larger oval, but whether or not it gives
still higher asymptotic accuracy isn’t known; its purpose
here has been as a testbed for the performance, good or
bad, of bca intervals. These generally performed well in
my examples, but the method can be pushed too far (as
in Remark 5), in which case the diagnostic/equivalence
computations will provide useful warnings.

Fisher criticized confidence intervals as giving exact
but possibly incorrect inferences. If one believes model
(6.45) then the standard intervals θ̂ ± z(α)σ seem unas-
sailably correct, at least in the absence of Bayesian prior
information. In this same sense, θ̂bca[α] and θ̂gbca[α] are
correct within the NSTF and GSTF frameworks. Accu-
racy concerns how fast Actual approaches a destination in
Figure 15 (faster for NSTF than standard), while correct-
ness concerns the appropriateness of the destination.

Davison and Hinkley (1997) describes a collection of
bootstrap confidence interval methods other than bca.
Beginning with an important 1983 paper by Barndorff-
Nielsen (1983), methods based on higher-order expan-
sions of the likelihood function have permitted second-
and even third-order accurate intervals, going beyond bca
to allowing conditioning on ancillary statistics. See Pierce
and Bellio (2017). The focus here on bca reflects its rela-
tively simple logical structure, computational ease (in the
computer era), and its usual good performance in appli-
cations. “Usual” isn’t always, though, and the methods of
this paper allow a data-based check on coverage accuracy.
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